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INTRODUCTION

The classical Hamiltonian function of the liquid drop model has 5 degrees of freedom,
namely the two shape variables β and γ and the three Euler angles.

H =
B

2

(
β̇2 + β2γ̇2

)
︸ ︷︷ ︸

Tvib

+
1

2

3∑
k=1

ω2
kIk︸ ︷︷ ︸

Trot

+V (β, γ). Bohr-Mottelson
Hamiltonian
after quantization

Imposing a certain value for the γ shape variable, one reaches the γ-rigid version of
the collective model which is interesting by itself due to its description of the basic
rotation-vibration coupling.

γ 6= 0◦ ⇒ 4 degrees of freedom (β, θ1, θ2, θ3) ⇒ Davydov-Chaban Hamiltonian
Davydov & Chaban NP 20 (1960) 499

γ = 0◦ ⇒ 3 degrees of freedom (β, θ1, θ2) ⇒ X(3)-type Hamiltonian
Bonatsos et. al. PLB 632 (2006) 238

Although the γ-rigidity hypothesis is somewhat crude it provides simple approaches to
the successful reproduction of the relevant experimental data.
Budaca EPJA 50 (2014) 87, PLB 739 (2014) 86; Buganu & Budaca PRC 91 (2015) 014306, JPG 42 (2015) 105106;

The similarity between the β excited bands of the X(5) and X(3) solutions
addresses the question about the importance of rigidity in explaining the critical
collective phenomena.



INTERPLAY BETWEEN γ-STABLE AND γ-RIGID COLLECTIVE MOTION

The kinetic energy operator T̂vib + T̂rot in the five-dimensional shape phase space

Ts = −
~2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
−

1

4β2

3∑
k=1

Q2
k

sin2
(
γ − 2

3
πk
)]

In the prolate γ-rigid regime defined only by three degrees of freedom, the same
operator gets a simpler form

Tr = −
~2

2B

[
1

β2

∂

∂β
β2 ∂

∂β
−

Q2

3β2

]
The interplay between γ-stable and γ-rigid collective motion is achieved by considering
the Hamiltonian:

H = χTr + (1− χ)Ts + V (β, γ), 0 6 χ < 1 Z rigidity measure
Budaca & Budaca JPG 42 (2015) 085103

β variable is separated from the γ-angular ones if the potential have the structure

v(β, γ) =
2B

~2
V (β, γ) = u(β) + (1− χ)

u(γ)

β2



Factorizing the total wave function as Ψ(β, γ,Ω) = ξ(β)ϕ(γ,Ω), the associated
Schrödinger equation is separated in two parts:

γ-angular equation
(1− χ)

− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+

3∑
k=1

Q2
k

4 sin2
(
γ − 2

3
πk
) + u(γ)

 +
χ

3
Q

2

ϕ(γ,Ω) = Wϕ(γ,Ω)

Small angle approximation ⇒ u(γ) = (3a)2 γ
2

2
a - stiffness of γ oscillations ⇓

W = 3a(1− χ)(nγ + 1) +
L(L + 1)− (1− χ)K2

3
, ϕ(γ,Ω) = η(γ)D

L
MK(Ω)

ηnγ,|K|(γ) = Nn,|K|γ
|K/2|

exp

(
−3a

γ2

2

)
L
|K/2|
n (3aγ

2
), n =

1

2

(
nγ −

∣∣∣∣K
2

∣∣∣∣)

β equation [
−
∂2

∂β2
−

2(2− χ)

β

∂

∂β
+
W

β2
+ u(β)

]
ξ(β) = εξ(β)



Infinite square well (ISW) potential Budaca & Budaca JPG 42 (2015) 085103

u(β) =

{
0, β 6 βW ,
∞, β > βW . ⇓

εL,K,s,nγ (βW ) =

(
xs,ν

βW

)2

, ξL,K,s,nγ (β) = Ns,νβ
χ− 3

2 Jν

(
xs,νβ

βW

)

ν =

[
L(L + 1)− (1− χ)K2

3
+

(
3

2
− χ

)2

+ (1− χ)3a(nγ + 1)

] 1
2

xs,ν is s-th zero of the Bessel function Jν(xs,νβ/βW ) and nβ = s− 1.

Davidson (D) potential Budaca & Budaca EPJA 51 (2015) 126

u(β) = β
2

+
β4
0

β2
.⇒

εLKnβnγ
= 2nβ+p+

5

2
, ξLKnβnγ

(β) = Nnβνβ
p+χ

e
− β

2

2 L
p+3

2
n (β

2
)

p = −
3

2
+

[
L(L + 1)− (1− χ)K2

3
+

(
3

2
− χ

)2

+ β
4
0 + (1− χ)3a(nγ + 1)

] 1
2

The full solution after proper normalization and symmetrization reads:

ΨLMKnβnγ
(β, γ,Ω) = ξL,K,nβ,nγ

(β)ηnγ,|K|(γ)

√
2L + 1

16π2(1 + δK,0)

[
D
L
MK(Ω) + (−)

L
D
L
M−K(Ω)

]

The B(E2) rates are calculated with the quadrupole transition operator T (E2)
µ = tβqµ



γ-RIGID/STABLE COLLECTIVE SHAPE PHASE SPACE

An identical β differential equation for determining the energy of the system is obtained
if one starts from the classical picture of LDM:

H =
B

2
β̇2 + (1− χ)

B

2
β2γ̇2 + (1− χ)T γ 6=0

rot + χT γ=0
rot + V (β, γ)

Due to its consistent geometrical construction, the LDM kinetic energy operator is
given by a Laplacian in a generalized coordinate system xm = (β, γ,Ω):

T̂ = −
~2

2
∇2 = −

~2

2

∑
lm

1

J

∂

∂xl
Jḡlm

∂

∂xm
,

where J =
√
det(g) is the Jacobian of the transformation from the quadrupole

coordinates

qm(β, γ,Ω) = β

{
D2
m0(Ω) cos γ +

1
√

2

[
D2
m2(Ω) +D2

m−2(Ω)
]

sin γ

}
.

to the curvilinear ones {xl} defined by the metric tensor:

glm =
∑
k

∂qk

∂xl
∂qk

∂xm
, ḡlm =

∑
k

∂xk

∂ql

∂xk

∂qm
.



Bohr-Mottelson model
(5 variables)

g = B


1 0 0 0 0
0 β2 0 0 0
0 0 4β2 sin2

(
γ − 2π

3

)
0 0

0 0 0 4β2 sin2
(
γ − 4π

3

)
0

0 0 0 0 4β2 sin2 γ


Axial γ-rigid regime (3 variables)

g = B

1 0 0
0 3β2 0
0 0 3β2 sin2 θ


Present case (5 variables)

T̂ = −
~2

2

∑
lm

1

J

∂

∂xl
JḠlm

∂

∂xm
,

Glm is a symmetric positive-definite bitensor not necessarily related to the metric glm.

Imbedding the χ dependence in Glm, one obtains after quantization a differential
equation whose eigenfunction differs from the previous one by a factor βχ.

Prochniak & Rohozinski JPG 36 (2009) 123101

In order to have both model derivations equivalent

one must amend the integration measure in the quantum
constructed model by the factor β−2χ. Budaca & Budaca EPJA 51 (2015) 126



MODEL’S ANALYTICAL PROPERTIES

The evolution as function of χ and a of theoretically
evaluated (with ISW potential) spectral observables such as
R4/2 = E(4+

g )/E(2+
g ) (a) ratio and the β (b) and γ (c) band

heads normalized to the energy of the first excited state.
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The low lying energy spectrum given as function of the rigidity parameter
χ, for different values of the remaining parameters.
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NUMERICAL APPLICATION

• • • Experimental ground, γ and β band states
� � � Theoretical ground, γ and β band predictions with D (solid) and ISW (dashed)
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χ 3·10−4 0.826 (0.948) 0.092

a 11.349 51.538 (168.899) 9.052

β0 2.044 2.840 2.963

σ 0.601 0.768 (0.567) 0.574

States 14 18 12

( ) - ISW fits



• • • Experimental ground, γ and β band states
◦ Experimental β band states with uncertain asignment

� � � Theoretical ground, γ and β band predictions with D (solid) and ISW (dashed)
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States 39 31 20
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J
Theoretical g-g E2 transition probabilities compared with the available
experimental data and with the rigid rotor predictions.

Experimental points are situated
between the rigid rotor and present
model’s predictions.

The data are closer to the rigid rotor
limit in case of the Dy isotopes.

While the only measurements for the
Gd isotopes associated to 158Gd are
closer to the present calculations.



J
Comparison of theoretical results with experiment and rigid rotor (R. R.)
predictions for several interband E2 transition probabilities.

Nucleus
2+
β
→2+

g

2+
β
→0+

g

2+
β
→4+

g

2+
β
→0+

g

2+
γ→2+

g

2+
γ→0+

g

2+
γ→4+

g

2+
γ→0+

g

158Gd 0.25(6) 4.48(75) 1.76(26) 0.079(14)
D 1.93 6.01 1.46 0.077

160Gd 1.87(12) 0.189(29)
D 1.79 4.97 1.44 0.074

ISW 1.81 5.00 1.45 0.074

162Gd
D 1.76 4.80 1.44 0.074

160Dy 2.52(44) 1.89(18) 0.133(14)
D 1.89 5.70 1.45 0.075

162Dy 1.78(16) 0.137(12)
D 1.75 4.70 1.44 0.073

ISW 1.84 5.18 1.45 0.074

164Dy 2.00(27) 0.240(33)
D 1.73 4.55 1.44 0.073

R.R. 1.43 2.57 1.43 0.071

Experimental γ-g transitions rates
are slightly underestimated.

While β-g transitions rates are
overestimated.

Overall higher values than the
R.R. predictions.

Very weak dependence on the
parameters for γ-g transitions.



Z Experimental evidences for the occurrence of 160Gd and 162Dy as singular
points in their respective isotopic chains.
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NEW PARAMETER FREE COLLECTIVE MODEL

β equation for the spherical vibrator model with an energy dependent string constant:[
−
∂2

∂β2
+

(τ + 1)(τ + 2)

β2
+ k(ε)β2

]
f(β) = εf(β), f(β) = β2F (β)

⇒ quadratic equation for the energy of the system:

ε =
√
k(ε)

(
N +

5

2

)
, N = 2nβ + τ

if the simplest energy dependence k(ε) = 1 + aε is chosen, which leads to

εN =

(N +
5

2

)
a

2
+

√
1 +

(
N +

5

2

)2 a2

4

(N +
5

2

)

Fnβτ (β) = Cnβτ
(
ξnβτ

)τ
e−

(
ξnβτ

)2
2 L

τ+ 3
2

nβ

[(
ξnβτ

)2
]
, ξnβτ =

√
1 + aεnβτβ



Due to the energy dependence of the potential, the scalar product is modified as
Formanek, Lombard, Mares, Czech J. Phys. 54 (2004) 289

β4dβ −→

1−
∂v(β, ε)

∂ε︸ ︷︷ ︸
=aβ2

β4dβ,

in order to satisfy the continuity equation.

Not a coherent theory for a > 0 because ρ =
[
Fnβτ (β)

]2 (
1− aβ2

)
β4

is not positive definite.
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Everything OK in the asymptotic limit of the a parameter, whose energy is described by
a parameter free expression (except scale):
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Other suitable experimental realizations: 104Pd and 106Pd. Budaca PLB (2015)



  

CONCLUSIONS

A simple exactly separable model was constructed by taking the kinetic
energy of the Bohr Hamiltonian as a combination of prolate γ-rigid and
γ-stable rotation-vibration kinetic operators.

The relative weight of these two components is managed through a so
called rigidity parameter which bridges the X(3) and X(3)-D γ-rigid
solutions to their γ-stable counterparts represented by ES-X(5) and
ES-D models when an ISW and respectively Davidson potential in β is
adopted.

The model was successfully applied for the description of the collective
spectra for few heavier isotopes of Gd and Dy. In both cases a critical
nucleus was identified through a discontinuous behavior in respect to
the rigidity parameter and relevant experimental observables.

The proposed hybrid formalism unveils

alternative features of the collective motion in the Gd and Dy isotopic
chains which are known to undergo shape phase transitions.



Quantum starting point[
−
∂2

∂β2
−

2(2− χ)

β
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+ u(β)

]
ξ(β) = εξ(β)

ξLKnβnγ (β) = Nnβνβ
p+χe−

β2

2 L
p+ 3

2
n (β2)

dV = β4−2χ |sin 3γ| dβdγdΩ

Classical starting point[
−
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∂β2
−

4

β
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+
W
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+ u(β)

]
ξ(β) = εξ(β)

ξLKnβnγ (β) = Nnβνβ
pe−
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2 L
p+ 3
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n (β2)

dV = β4 |sin 3γ| dβdγdΩ



ηnγ ,|K|(γ) = Nn,|K|γ
|K/2| exp

(
−3a

γ2
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)
L
|K/2|
n (3aγ2), n =

1

2

(
nγ −

∣∣∣∣K2
∣∣∣∣)

W = 3 a(1− χ)︸ ︷︷ ︸
c

(nγ + 1) +
L(L+ 1)− (1− χ)K2

3
, ϕ(γ,Ω) = η(γ)DLMK(Ω)

⇓
ηnγ ,|K|(γ) = Nn,|K|γ

|K/2| exp

(
−

3c

1− χ
γ2

2

)
L
|K/2|
n

(
3c

1− χ
γ2

)

When c = const. and χ → 1 the associated γ probability distribution acquires a
strongly localized maximum at a value which tends asymptotically to zero.

Rigidity χ and γ stiffness a are interrelated.

a
χ→ 1−−−→ ∞



• • • Experimental ground, γ and β band states
◦ ◦ ◦ Experimental ground, γ and β band states with uncertain asignment

� � � Theoretical ground, γ and β band predictions
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The ground state β probability density in respect to the dβ integration measure.


