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INTRODUCTION

The classical Hamiltonian function of the liquid drop model has 5 degrees of freedom,
namely the two shape variables g and v and the three Euler angles.
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Imposing a certain value for the + shape variable, one reaches the ~-rigid version of
the collective model which is interesting by itself due to its description of the basic

rotation-vibration coupling.

@ ~+#£0° = 4degrees of freedom (3,01,02,03) = Davydov-Chaban Hamiltonian
Davydov & Chaban NP 20 (1960) 499

@ v =0° = 3degrees of freedom (3,01,02) = X(3)-type Hamiltonian
Bonatsos et. al. PLB 632 (2006) 238

Although the ~-rigidity hypothesis is somewhat crude it provides simple approaches to
the successful reproduction of the relevant experimental data.
Budaca EPJA 50 (2014) 87, PLB 739 (2014) 86; Buganu & Budaca PRC 91 (2015) 014306, JPG 42 (2015) 105106;

addresses the question about the importance of rigidity in explaining the critical

The similarity between the 3 excited bands of the X(5) and X(3) solutions
collective phenomena. J




INTERPLAY BETWEEN 7y-STABLE AND /-RIGID COLLECTIVE MOTION

The kinetic energy operator T}, + Tro¢ in the five-dimensional shape phase space
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In the prolate ~-rigid regime defined only by three degrees of freedom, the same
operator gets a simpler form
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The interplay between ~-stable and ~-rigid collective motion is achieved by considering
the Hamiltonian:

H=xTr+(1-x)Ts +V(B,7), 0<x<1 K rigidity measure
Budaca & Budaca JPG 42 (2015) 085103

3 variable is separated from the ~v-angular ones if the potential have the structure

u(y)
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Factorizing the total wave function as ¥ (3, v, Q) = £(8)¢(v, ), the associated
Schrédinger equation is separated in two parts:

~v-angular equation
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Infinite square well (ISW) potential Budaca & Budaca JPG 42 (2015) 085103
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x5, is s-th zero of the Bessel function J, (zs,, 8/B8w ) and ng =s— 1

Davidson (D) potential Budaca & Budaca EPJA 51 (2015) 126
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The full solution after proper normalization and symmetrization reads:

2L +1
YiMEngny (8,7, Q) = €L, K,ng,ny (B)Wn,y,\K\(’Y)Hm [DJI(JK(Q) + (*)LDJI\J/[—K(Q)]

The B(E?2) rates are calculated with the quadrupole transition operator TfLEQ) =tBqu



7Y-RIGID/STABLE COLLECTIVE SHAPE PHASE SPACE

An identical 3 differential equation for determining the energy of the system is obtained
if one starts from the classical picture of LDM:

B . B 5. =
H= B+ (=) 5 B2 + (1= )T+ XD + V(B.7)

Due to its consistent geometrical construction, the LDM kinetic energy operator is
given by a Laplacian in a generalized coordinate system z,,, = (3, ~, Q):
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where J = \/det(g) is the Jacobian of the transformation from the quadrupole
coordinates

1

4 (B 7. = B {Dfno(m cos+ =

[D25() + D2, _5()] sin}
to the curvilinear ones {x!} defined by the metric tensor:
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@ Bohr-Mottelson model

) 1 0 0 0 0
(5 variables) 0 g2 0 0 0
g=B|[0 0 4B%sin? (’yfz?“) 0 0
0 0 0 48%sin? (y — &) 0
0 0 0 0 482 sin? v
@ Axial v-rigid regime (3 variables) 1 0 0
g=B|0 352 0
0 0 33%sin%0
@ Present case (5 variables)
o 10 gm0
2 J Ox! dxm’

G, is a symmetric positive-definite bitensor not necessarily related to the metric gy, .
Prochniak & Rohozinski JPG 36 (2009) 123101

Imbedding the x dependence in Gy,,,, one obtains after quantization a differential
equation whose eigenfunction differs from the previous one by a factor gX.
In order to have both model derivations equivalent

one must amend the integration measure in the quantum
constructed model by the factor 3—2X. Budaca & Budaca EPJA 51 (2015) 126




MODELS ANALYTICAL PROPERTIES

The evolution as function of x and a of theoretically
evaluated (with ISW potential) spectral observables such as
Ry 5 = E(44)/E(27) (a) ratio and the 3 (b) and v (c) band
heads normalized to the energy of the first excited state.
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@ The low lying energy spectrum given as function of the rigidity parameter
X, for different values of the remaining parameters.

ES-D X X (3)-D
Bonatsos et. al. PRC 76 (2007) 064312 0 —> ( ) 1 Budaca & Budaca EPJA (2015)
X = X =



NUMERICAL APPLICATION

e o o Experimental ground, v and 8 band states
/" / Theoretical ground, v and 3 band predictions with D (solid) and ISW (dashed)
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lSSGd 1GOGd 162(3d
00 4 8 i2 1‘6 20 O0 4 8 i2 1‘6 20 00 4 8 i2 16 20
L L L
X 3.10—4 0.826 (0.948) 0.092
11.349 51.538 (168.899) 9.052
Bo 2.044 2.840 2.963
o 0.601 0.768 (0.567) 0.574
States 14 18 12

() - ISW fits



e ¢ o Experimental ground, v and 8 band states
o Experimental 8 band states with uncertain asignment
"/ / Theoretical ground, v and 3 band predictions with D (solid) and ISW (dashed)
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Theoretical g-g F£2 transition probabilities compared with the available
experimental data and with the rigid rotor predictions.

@ Experimental points are situated
between the rigid rotor and present
model’s predictions.

@ The data are closer to the rigid rotor
limit in case of the Dy isotopes.

@ While the only measurements for the
Gd isotopes associated to 153Gd are
closer to the present calculations.



F Comparison of theoretical results with experiment and rigid rotor (R. R.)
predictions for several interband E?2 transition probabilities.

2t ot 2t sat ot ot ot 4t
B g B g A g ol g
Nucleus 22—_*03— 2k o D iy, = 0
158Gd 0.25(6) 4.48(75) 1.76(26) 0.079(14)
D 1.93 6.01 1.46 0.077
160Gq 1.87(12) 0.189(29)
D 1.79 4.97 1.44 0.074
ISW 1.81 5.00 1.45 0.074
162Gd
D 1.76 4.80 1.44 0.074
160y 2.52(44) 1.89(18) 0.133(14)
D 1.89 5.70 1.45 0.075
162py 1.78(16) 0.137(12)
D 1.75 4.70 1.44 0.073
ISW 1.84 5.18 1.45 0.074
164Dy 2.00(27) 0.240(33)
D 1.73 4.55 1.44 0.073
R.R. 1.43 2.57 1.43 0.071

Experimental v-g transitions rates
are slightly underestimated.

While 3-g transitions rates are
overestimated.

Overall higher values than the
R.R. predictions.

Very weak dependence on the
parameters for v-g transitions.
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Experimental evidences for the occurrence of 10Gd and 162Dy as singular
points in their respective isotopic chains.

@

(a) ~ band staggering

B(4,) + B(2,) - 2E(3,)
E(2])

S(4) =

(b) Relative spacing of the lowest
states in the 8 band
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NEW PARAMETER FREE COLLECTIVE MODEL

B equation for the spherical vibrator model with an energy dependent string constant:

[ 0 L (D +2)

o5 D 4 k08| 15) = s (0), 16) = 2P

= quadratic equation for the energy of the system:
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if the simplest energy dependence k(e) = 1 + ac is chosen, which leads to
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(en—€o)/(€1—€0)

@ Due to the energy dependence of the potential, the scalar product is modified as

Formanek, Lombard, Mares, Czech J. Phys. 54 (2004) 289

Bd —

v (B, €)

1—- 227

in order to satisfy the continuity equation. )
@ Not a coherent theory for a > 0 because P = [Fnﬁf(ﬁ)} (1-aB?)p*

is not positive definite.

3 probability density
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Everything OK in the asymptotic limit of the a parameter, whose energy is described by

a parameter free expression (except scale):

5\ a 5\ 2 a2 5 a4 a 5
I (N+2) e i (N+2) Ef(N+2) — ex=2(N+2
EN ( +2)2+ +( +2) 2 ( +2) EN 2( +2

[
8]
r=4
1
6\ 6 395
=3
328°3
| =/
w8753
4 a4 / % 23
r=2 237
L 16748 75(30)
2 2 v1 Y
r=1
100 100
o { 0 ssv 03—l—°
=0

Other suitable experimental realizations: 194Pd and 196Pd.
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CONCLUSIONS

@ A simple exactly separable model was constructed by taking the kinetic
energy of the Bohr Hamiltonian as a combination of prolate ~-rigid and
~-stable rotation-vibration kinetic operators.

=

The relative weight of these two components is managed through a so
called rigidity parameter which bridges the X (3) and X (3)-D ~-rigid
solutions to their v-stable counterparts represented by ES-X (5) and
gl ES-D models when an ISW and respectively Davidson potential in /3 is
adopted.
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11 @ The model was successfully applied for the description of the collective
‘ spectra for few heavier isotopes of Gd and Dy. In both cases a critical
| nucleus was identified through a discontinuous behavior in respect to
a the rigidity parameter and relevant experimental observables.
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The proposed hybrid formalism unveils

alternative features of the collective motion in the Gd and Dy isotopic
chains which are known to undergo shape phase transitions.
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@ Quantum starting point

02 22-x) 90 W
gz~ A S )] €(6) = )
gLKnﬁnfy (ﬁ) = Nnguﬁp+X€7%LZ+%(52)

dV = 472X |sin 3v| dBddQ

@ Classical starting point

52 4 0 w
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ELicngn (B) = NuguBPe™ T LET 2 (82)

dV = B* |sin 3| dBdydQ
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When ¢ = const. and x — 1 the associated ~ probability distribution acquires a
strongly localized maximum at a value which tends asymptotically to zero.

@ Rigidity x and ~ stiffness a are interrelated.
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e o o Experimental ground, v and 8 band states
o o o Experimental ground, v and 8 band states with uncertain asignment
/" // Theoretical ground, v and 3 band predictions
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@ The ground state 3 probability density in respect to the d3 integration measure.



