Systematic Evaluation of the Nuclear Binding Energies in the Valence Shells

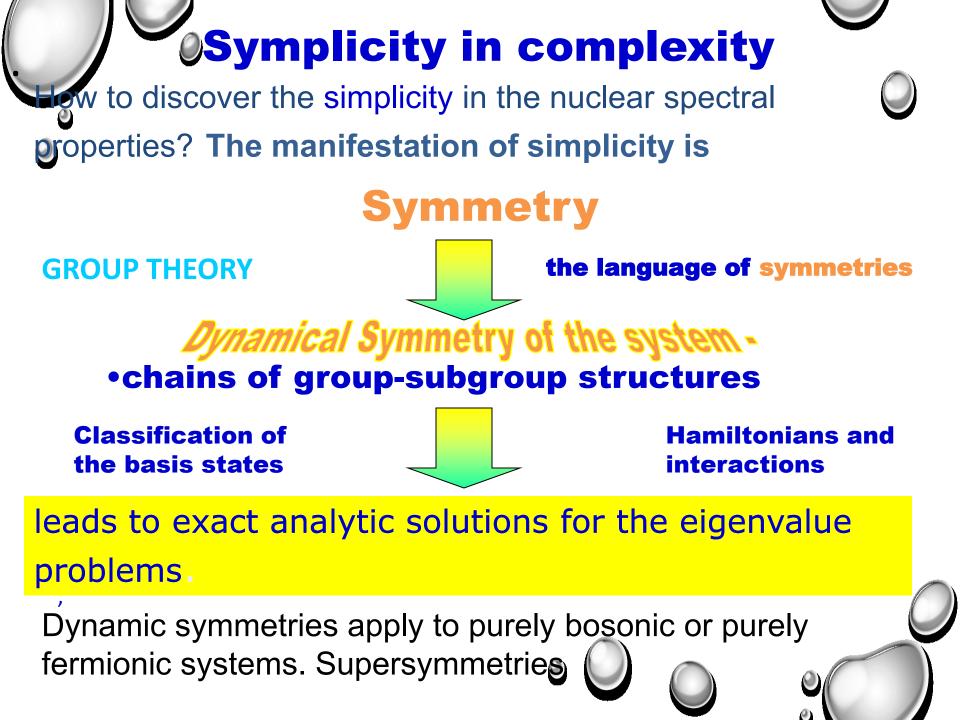
A. Georgieva¹, A. Aprahamian², A. Teymurazyan² I. Bently², A. Nystrom²,

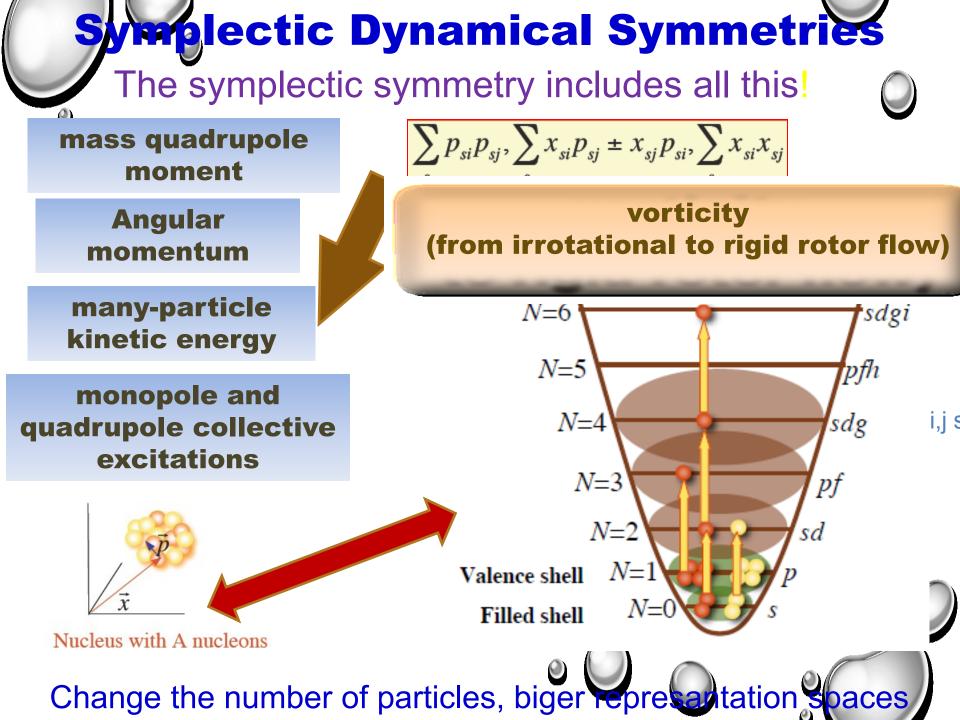
¹Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

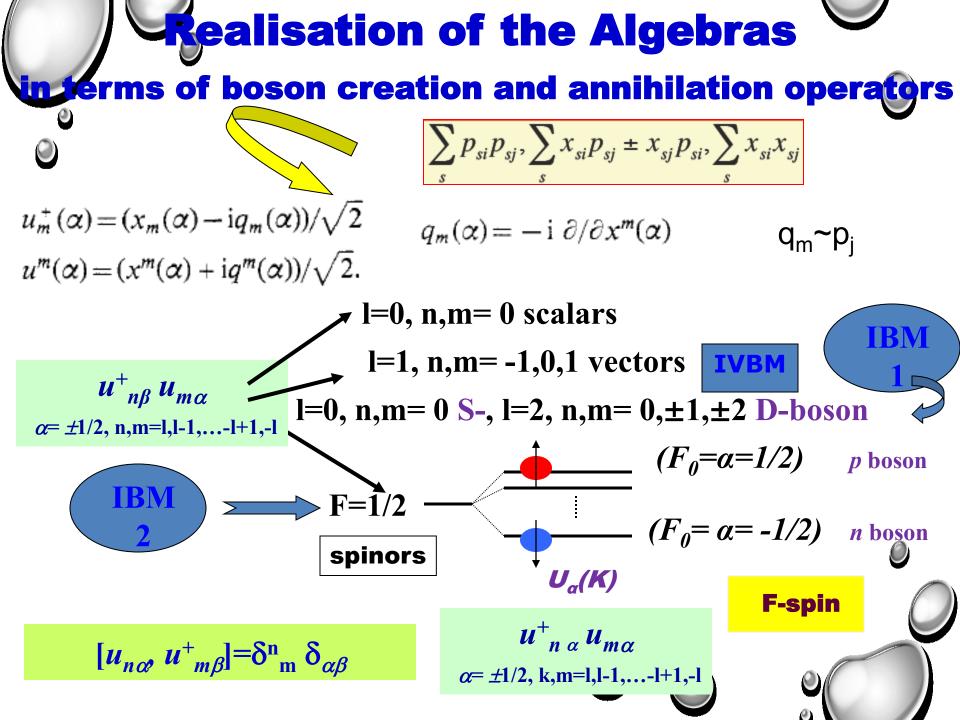
²Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA

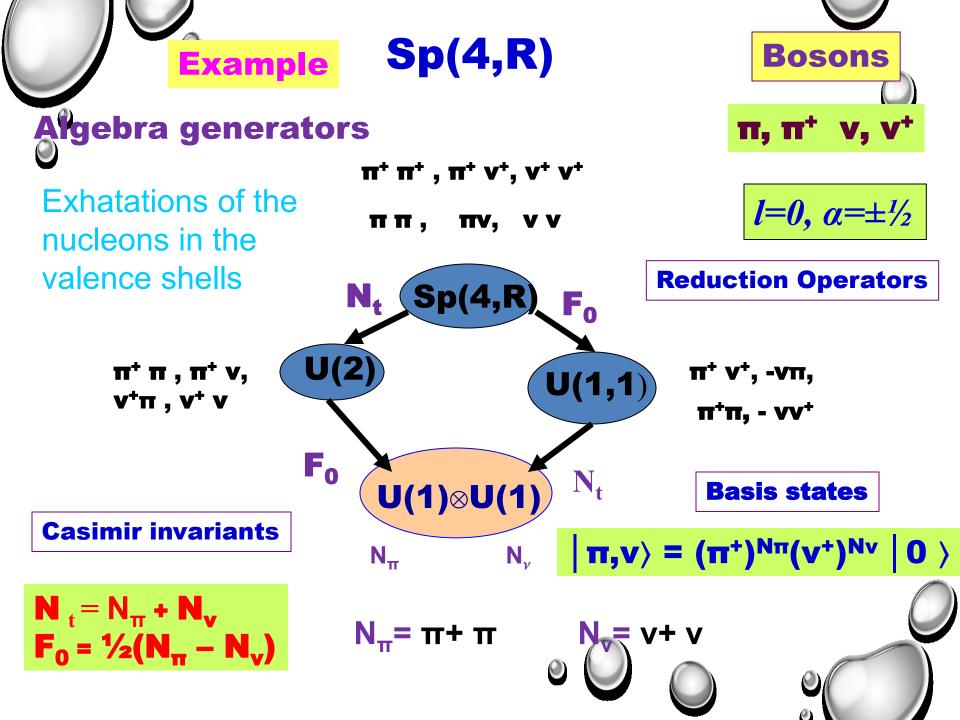
International Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" (SDANCA-15), 8-10 October 2015, Sofia, Bulgaria

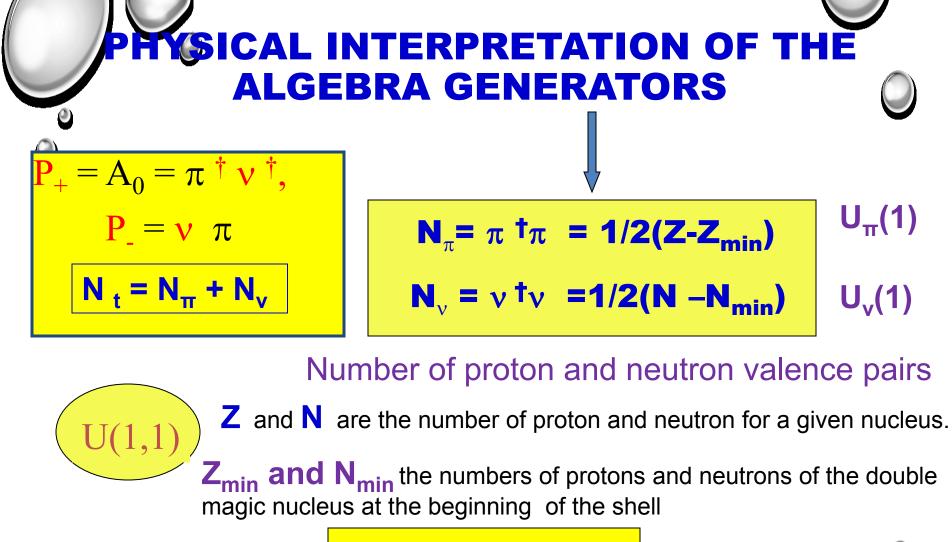
- **1. Origin and Definition of F-spin**
- **2.Dynamical Symmetries as phases of the nuclear system 2.1 Simplectic symmetries**
 - **2.2 Classification of nuclei with Sp(4,R)** –quantum numbers F_0 and N physical interpretation
- **3. Systematic investigation of nuclear properties**
 - **3.1 Empirical investigation of collective states**
 - **3.2 Generalized description introducing phases,** phase transitions and control parameters
 - 4. Application of the classification for Evaluation of the Nuclear Binding Energies in the Valence Shells
- **5. Predictions and possible Generalizations**

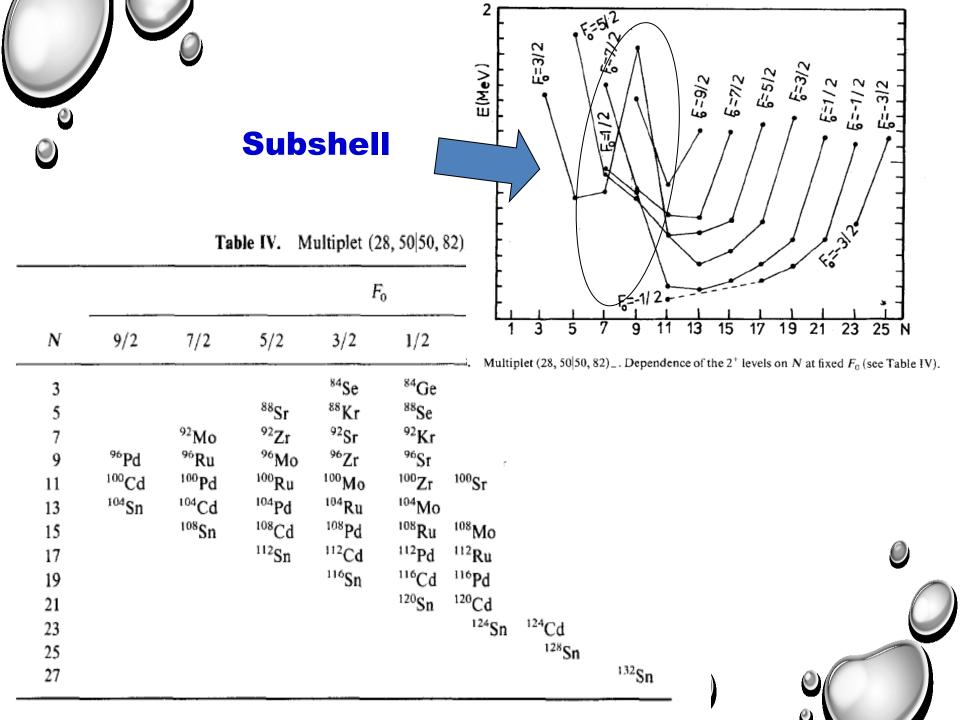

ORIGIN AND DEFINITION OF F-SPIN THE NUCLEAR STRUCTURE


- A two-fluid (neutrons and protons),
- finite N system (IBM2)
- interacting via strong, short and long range forces.

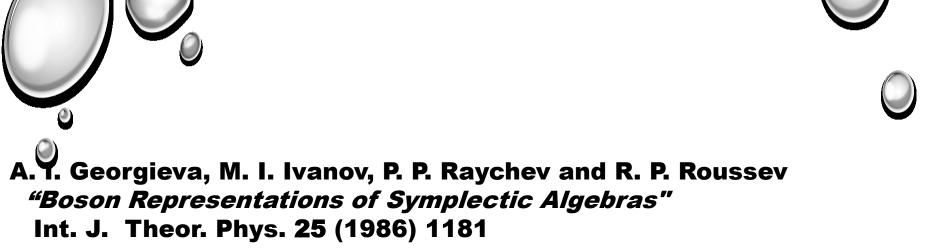

How are complex systems built from a few, simple ingredients?


- Shell Structure – number of particles in each shell, magic numbers




The F-spin group U_F(2)

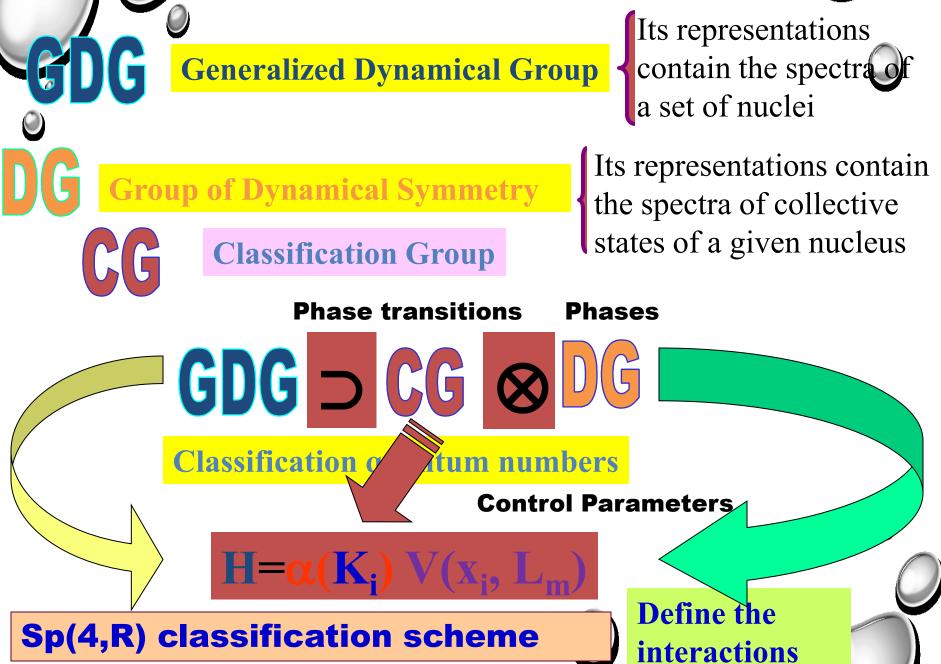
$$F_{+} = \sum_{a=0}^{5} \pi_{a}^{+} \nu_{a}, \qquad F_{-} = \sum_{a=0}^{5} \nu_{a}^{+} \pi_{a}, \qquad F_{0} = \frac{1}{2} (N_{\pi} - N_{\nu})$$


Sn	(\mathbf{R})	assifica	ation sc	cheme			Rows – fixed $N_t = N_p + N_n$					
			Columns-f				fixed $F_0 = Np-Nn$					
E	-2	-1	0	1		2			3			
]	K=	= 1	
0									Vacu	um	$ 0\rangle$	
										•	41	
2		2,0)	1,1 >	0,2>					Mapj nucle	· ·		16
4	4,0 >	3,1)	2,2 >	1,3	\rangle),4 >		majo			
N.									_			
• •t							-					
				N/F ₀ 1	0		-1	-2	-3	-4	-5	
	N _t (Sp	(4,R)		0 2 ⁶⁰ Ge	⁵⁶ Ni ⁶⁰ Zn		⁶⁰ Ni 0		-			22 20
				4 64Se	64Ge		⁶⁴ Zn 1	⁶⁴ Ni 0	21			18
				6	⁶⁸ Se		⁶⁸ Ge 2	⁶⁸ Zn 1	No. A March Concord	80.00		16
(U(2				8 10	72 Kr 76 Sr	100 Mar.	⁷² Se 3 ⁷⁶ Kr 4	⁷² Ge 2 ⁷⁶ Se 3		⁷² Ni*0 ⁷⁶ Zn*1	⁷⁶ Ni 0	14 12
		even		10	⁸⁰ Zr		80 Sr 5	⁸⁰ Kr 4		⁸⁰ Ge 2	⁸⁰ Zn 1	12
	\searrow			14	⁸⁴ Mc		⁸⁴ Zr 6	⁸⁴ Sr 5		84 Se 3	2.01	8
				16	³⁸ Ru		⁸⁸ Mo 7	⁸⁸ Zr 6	⁸⁸ Sr 5			6
	F ₀			18	$9^2 Pd$		⁹² Ru 8	⁹² Mo7 *				4
	(U(1)	$\otimes U(1)^{*}$	- `t	20 22	⁹⁶ Cd ¹⁰⁰ Sn		⁹⁶ Pd 9	•	8			2
					1	10	2	3	4	5		$\overline{F_0}$

N/F_0	1	0	-1	-2	-3	-4	-5		
0		⁵⁶ Ni 0						22	
2	⁶⁰ Ge	⁶⁰ Zn 1	⁶⁰ Ni 0	3]	3	ļ	20	
4	⁶⁴ Se	⁶⁴ Ge 2	^{64}Zn 1	⁶⁴ Ni 0				18	
6		⁶⁸ Se 3	⁶⁸ Ge 2	⁶⁸ Zn 1	^{68}Ni 0			16	
8		⁷² Kr 4	⁷² Se 3	⁷² Ge 2	⁷² Zn 1	⁷² Ni*0		14	
10		⁷⁶ Sr 5	⁷⁶ Kr 4	⁷⁶ Se 3	⁷⁶ Ge 2	⁷⁶ Zn*1	⁷⁶ Ni 0	12	
12		⁸⁰ Zr 6	80 <i>Sr</i> 5	⁸⁰ Kr 4	⁸⁰ Se 3	⁸⁰ Ge 2	⁸⁰ Zn 1	10	
14		⁸⁴ Mo 7	^{84}Zr 6	⁸⁴ Sr 5	⁸⁴ Kr 4	⁸⁴ Se 3		8	
16		³⁸ Ru 8	⁸⁸ Mo 7	⁸⁸ Zr 6	⁸⁸ Sr 5			6	
18		⁹² Pd 9	⁹² Ru 8	⁹² Mo 7		2.4 E			2/5
20		⁹⁶ Cd 10	⁹⁶ Pd 9	*		L	_		65/2 1
22		¹⁰⁰ Sn 11			8 0	2	2	•	
		1	2	3	4			5/	6 = -3/2 6 = -3/2
Subshell									

Multiplet (28, 28|50, 50). Dependence of the 2^+ levels on N at fixed F_0 (see Table III).

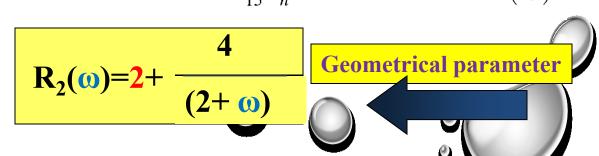
 \bigcirc . Fa=-11/2 Fa=-0/2 F=-7/2 , F_=-13/2 ٢ F**o** = - 3/2 **.** F₀=- 7/2 F₆ =- 9/2 E (Me V) Fo =-11/2 F_o=-5/2 Б*=*-13/2 Fo=-15/2 1 Fo=-5/2 25 N 9 23 5 13 15 17 19 21 3 7 11 1 0

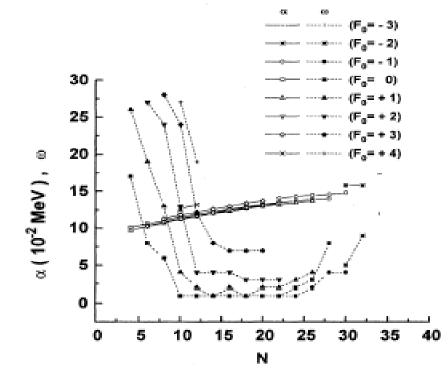


A. I. Georgieva, M. I. Ivanov, P. P. Raychev and R. P. Roussev *"On The Boson Representations of Symplectic Algebras: General Scheme"*

Compt. Rend. Bulg. Acad. Sci., 40, N 3, (1987), 29

- A. Georgieva, M. Ivanov, P. Raychev, R. Roussev
 "F-spin and Sp(24,R) Classification of the Even Even Nuclei" Compt. Rend. Bulg. Acad. Sci., 41, (1988), 55
- A. Georgieva, M. Ivanov, P. Raychev, R. Roussev *"Classification of the Even - Even Nuclei in Symplectic Multiplets"* Int. J. Theor. Phys. 28 (1989) 769

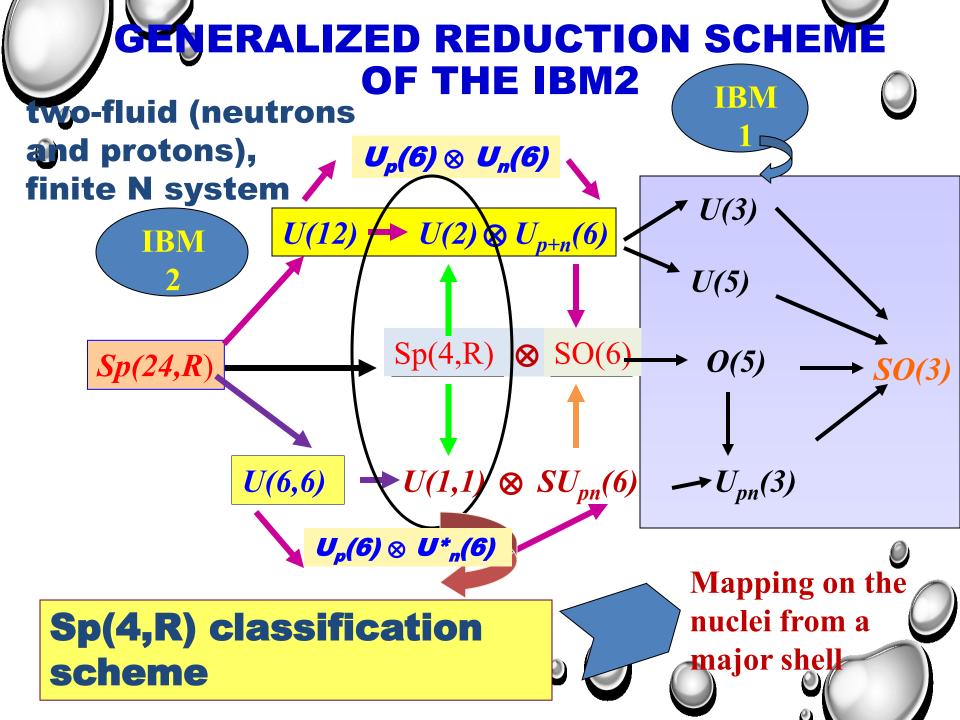

Function on the classification quantum numbers


$$\begin{split} A_{p} &= N_{p}^{(1)} + N_{p}^{(2)}, \quad A_{n} &= N_{n}^{(1)} + N_{n}^{(2)}, \\ N &= N_{\pi} + N_{\nu}, \quad F_{0} &= \frac{1}{2} (N_{\pi} - N_{\nu}), \\ \bar{N} &= \bar{N}_{\pi} + \bar{N}_{\nu}, \quad \bar{F}_{0} &= \frac{1}{2} (\bar{N}_{\pi} - \bar{N}_{\nu}), \end{split}$$

 $L(L+\omega)$

6)

 $\alpha(A_{p}, A_{n}, N, F_{0}, \bar{N}, \bar{F}_{0}) = D_{1} + D_{2}N + D_{3}\bar{N} + D_{4}F_{0} + D_{5}\bar{F}_{0}$ $+ D_{6}N^{2} + D_{7}\bar{N}^{2} + D_{8}F_{0}^{2} + D_{9}\bar{F}_{0}^{2}$ $+ D_{10}NF_{0} + D_{11}\bar{N}F_{0} + D_{12}A_{p}$ $+ D_{13}A_{n}.$ (19)


R. Roussev and **P.** Raychev,

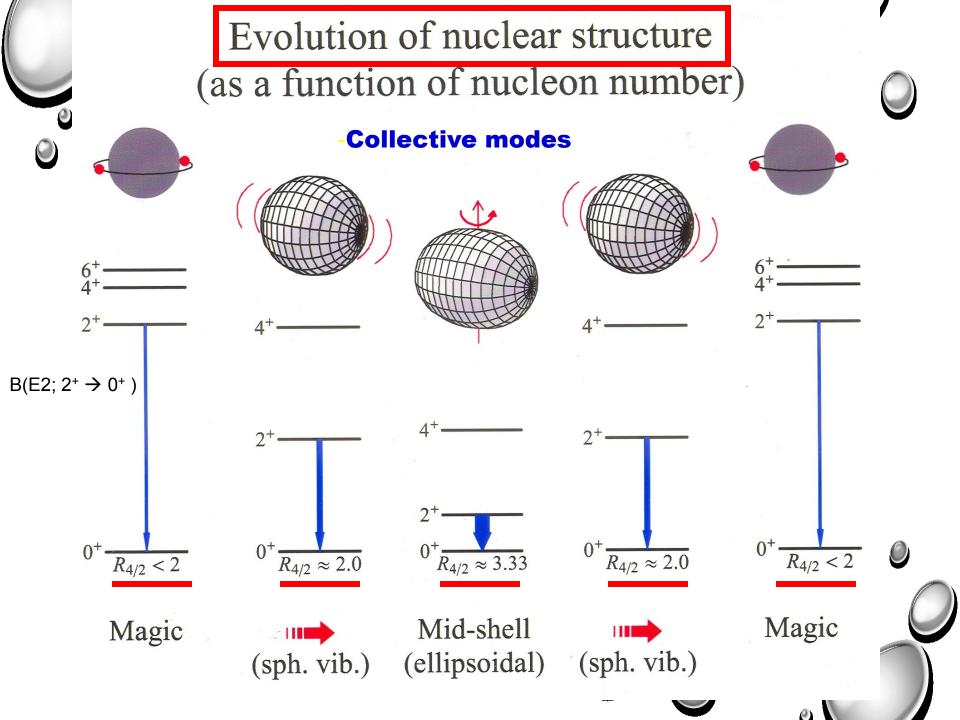
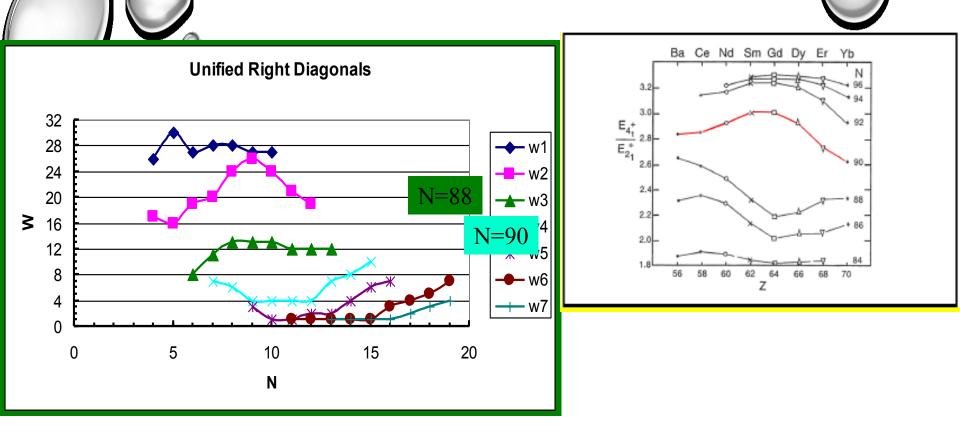
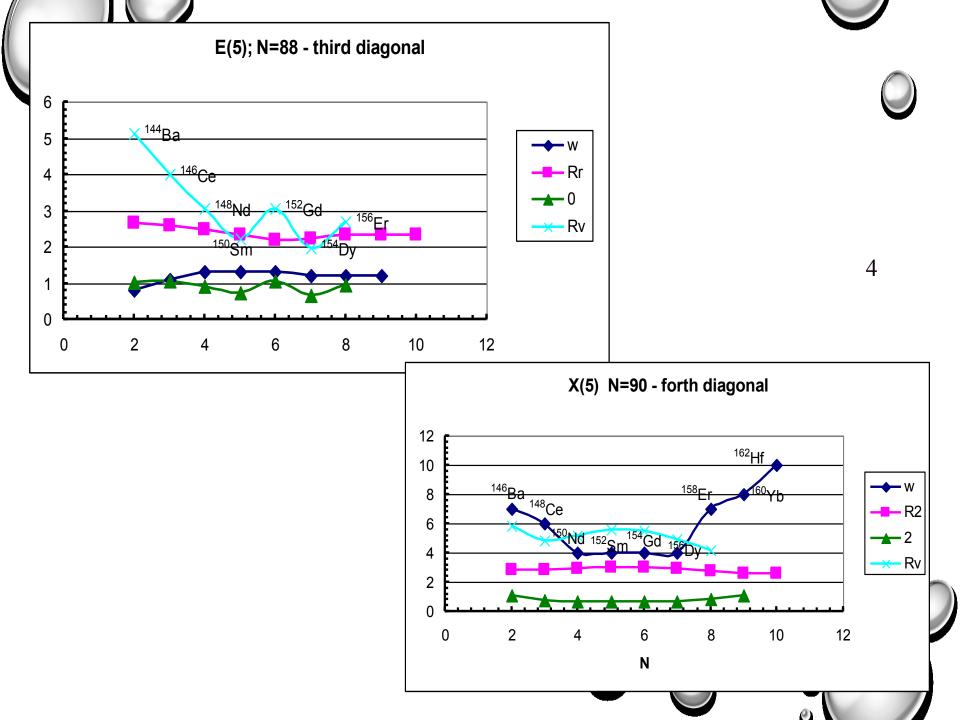

"Unified description of the low I ying states of the ground bands of even-even nuclei", Phys. Rev. C 52, (1995) 1853.

TABLE XI. Parameters D_i .

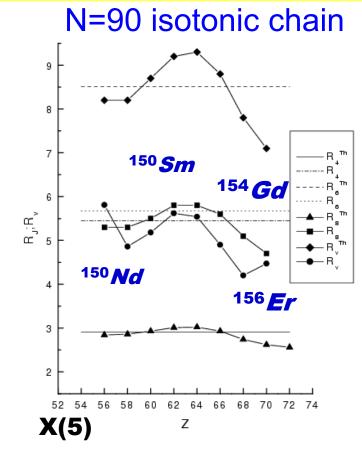

927 low lying	i	D_i [MeV]
states of	1	+0.0261526
	2	-0.0009279
271 nuclei	3	-0.0021273
	4	-0.0323361
from	5	-0.0302709
	6	-0.0000098
5 major shells	7	+0.0000059
-	8	+0.0009395
σ = 45 keV	9	-0.000730
0 = 40 KeV	10	+0.0001599
	11	-0.000153
$\chi^2 = 1.0001$	12	+0.001724
A 1.0001	13	-0.001318

i	D_i [MeV]	$\pm \Delta D_i [MeV]$
1	+0.0261526	0.0001740
2	-0.0009279	0.0000284
3	-0.0021273	0.0000232
4	-0.0323361	0.0001986
5	-0.0302709	0.0001770
6	-0.000098	0.0000002
7	+0.0000059	0.0000001
8	+0.0009395	0.0000064
9	-0.000730	0.0000049
10	+0.0001599	0.0000013
11	-0.000153	0.0000011
12	+0.001724	0.0000107
13	-0.001318	0.0000064

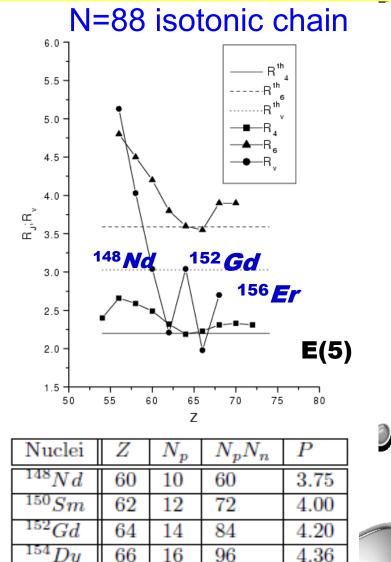
		Phase/S d shell →[)eforme	d nuclei	_	SU(3)			
	1< <i>∞</i> <20 −	→ ?Transition	onal nuc	:lei?	→	O(6)			
_	20< <i>∞</i> → cl	osed shell-	→ Spher	ical nuo	clei —	→ U(5)			
	Property	U(5)	E(5)	O (6)	X(5)	SU(3)			
	ω	20÷30	11,12	6	3,4	1			
	$R_r = E_4 / E_2$	2.00	2.20	2.50	2.91	3.33			
	$R_v = E_0 / E_2$		3.03		5.67				
•	Critical Point Symmetries Other important properties								



A, I, Georgieva, Tz. Venkova, and A. Aprahamian

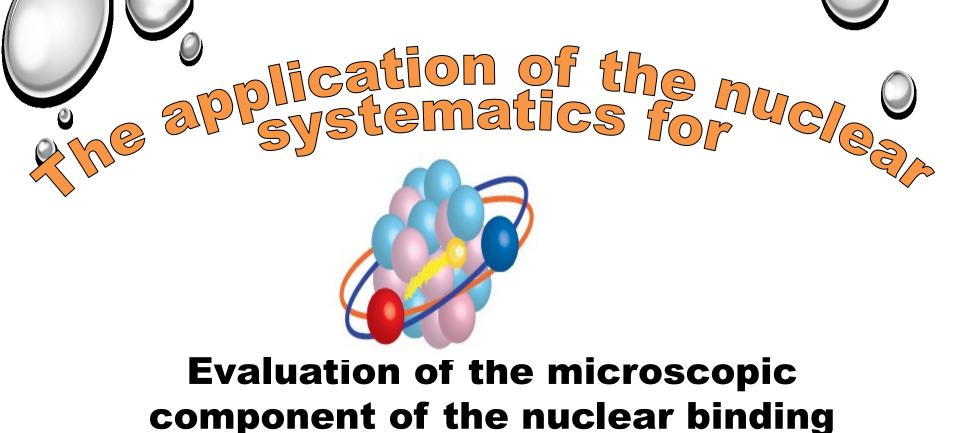

" Systematics of Nuclei with Critical Point Symmetries in the Rare-Earth Region"

Proceedings of the XXIII International Workshop on Nuclear Theory (14-19 June , 2004, Rila Mountains, Bulgaria),


ed. S. Dimitrova, Heron Press Ltd., Sofia, Bulgaria (2005), 283-294

Theoretical predictions of the critical points signatures and their corresponding experimental values for the nuclei in the:

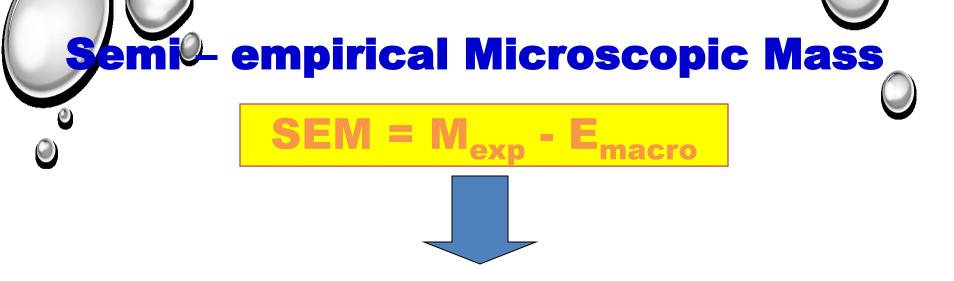
Nuclei	Z	N_p	$N_p N_n$	P
^{150}Nd	60	10	80	4.44
^{152}Sm	62	12	96	4.80
^{154}Gd	64	14	112	5.09
^{156}Dy	66	16	128	5.33


 ^{156}Er

68

18

108

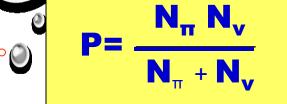

4.50

energy

as a function of F-spin and the proton number Z

in the nuclear shells

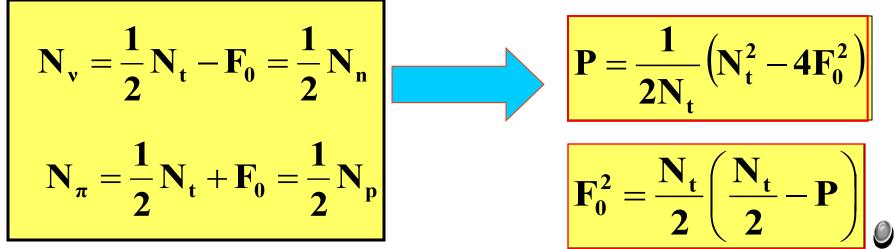
Isolates the mass effects from the valence space


M_{exp} – experimental ground-state atomic mass-excess

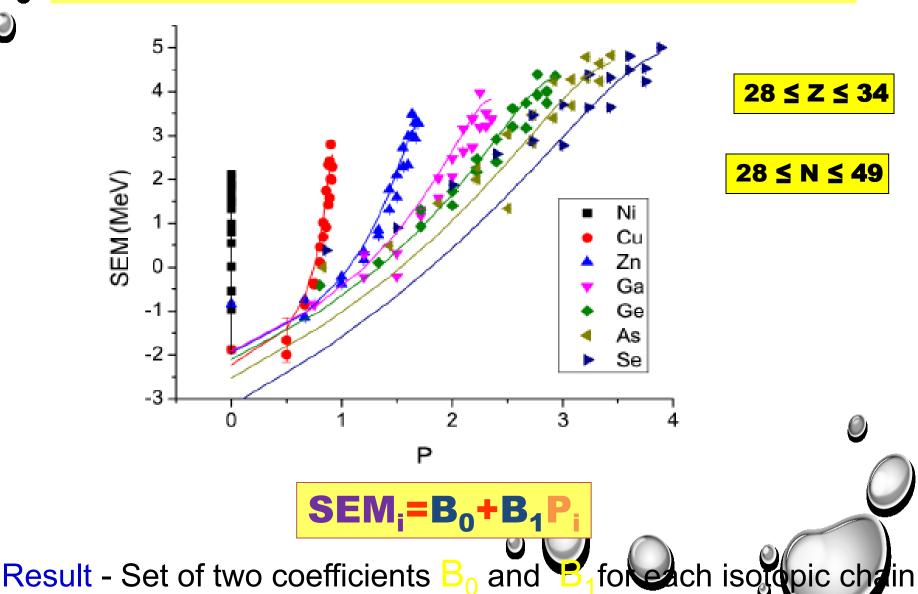
$\mathbf{E}_{macro} = \mathbf{M}_{th} - \mathbf{E}_{mic}$

 M_{th} – calculated ground-state atomic mass-excess from FRDM

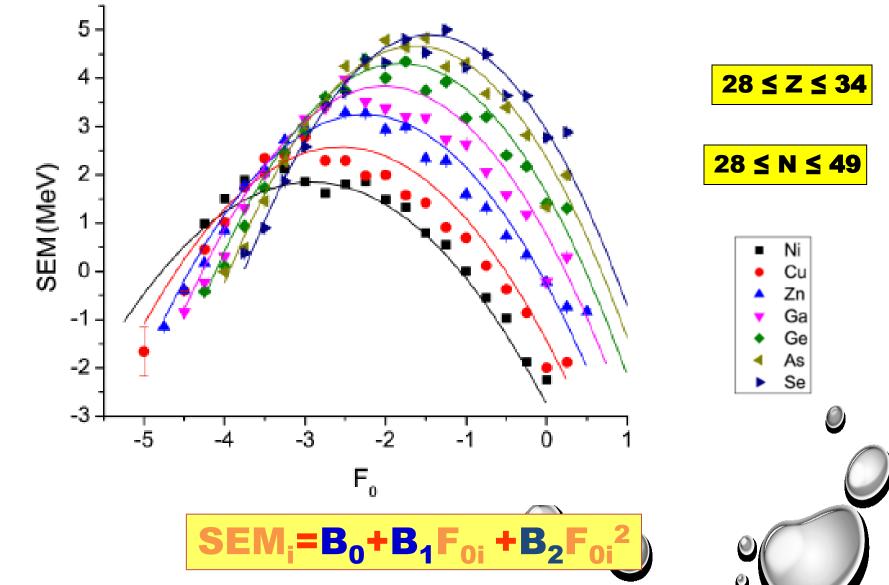
E_{mic} – calculated ground-state microscopic energy from FRDM– Finite-Range Droplet Model ([5] P. MËoller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Atomic Data and Nuclear Data Tables 59, 185 (1995).

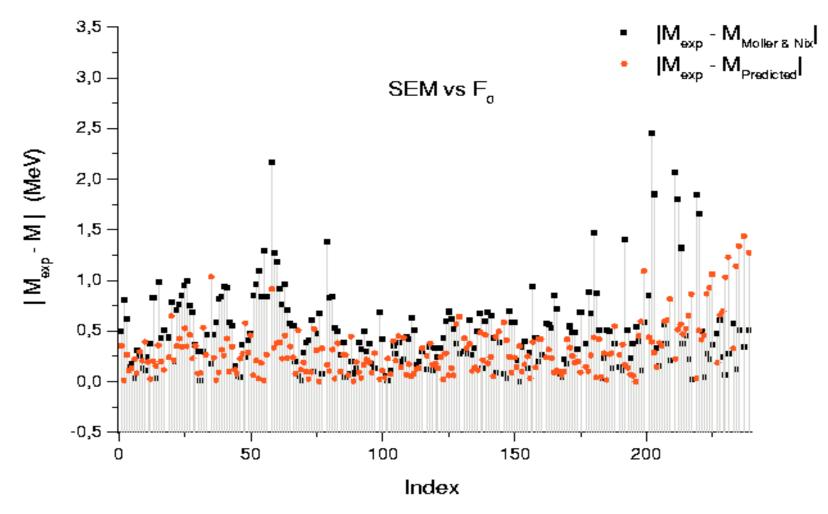

Comparing the P systematics and F-spin classification

0

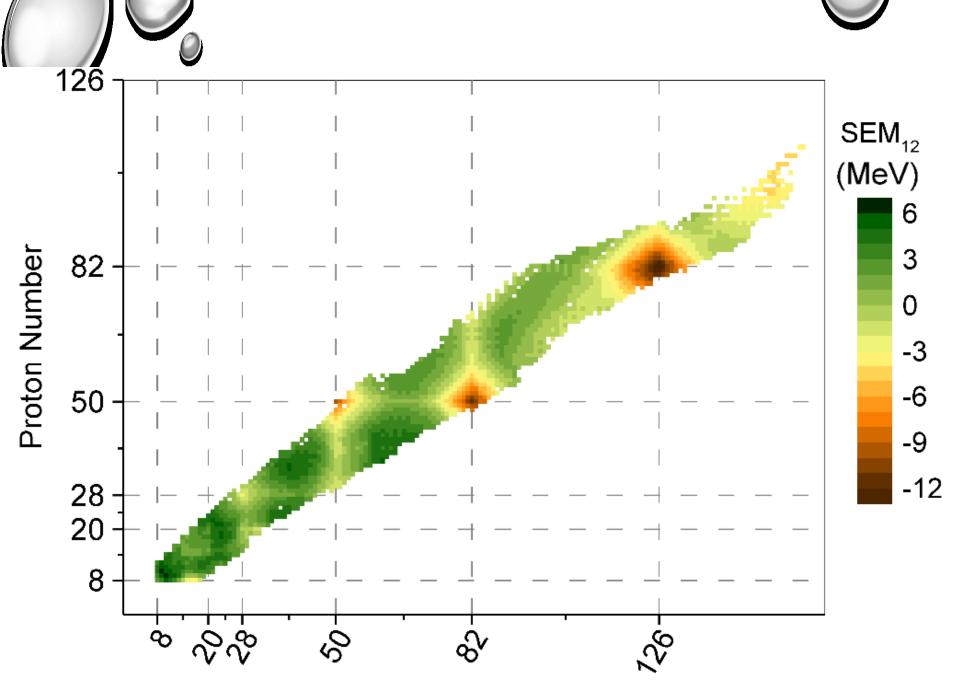

average number of proton-neutron interactions per a valence nucleon

The relation between P and F₀ **as classification parameters**




A. Teymurazyan, A. Aprahamian, and A. I. Georgieva *"Prediction of Nuclear Masses in the A=80 Region of Nuclei as a Function of P and F-Spin*", Proceedings of the International Conference on Nuclear Structure, "Mapping the Triange" Wyoming, May 22-25, 2002, eds. A. Aprahamian, J. Cizewski, S. Pittel and N. Zamfir, AIP Conference Proceedings 638 (2002), 271 - 273

Fit of SEM as a linear function of P for the even and odd A nuclei in each isotopic chain



Fit of SEM as a parabolic function of F₀ for the even and odd A nuclei in each isotopic chain

Comparison of the differences of the M_{ext} with the evaluation of **FRD**M and SEM(F₀)

Neutron Number

Generalization of the fit for all shells

Taking into account subshells

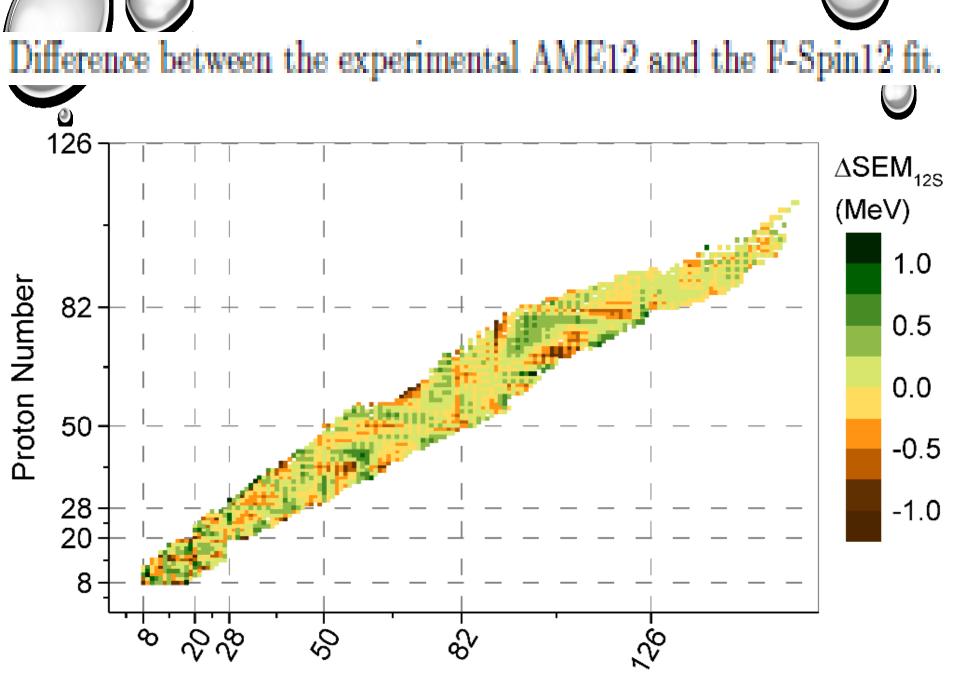
TABLE I. F.Spin₁₂ and F.Spin₁₂₅ Zones

Zone	Z_{min}	Z_{max}	N_{min}	N_{max}	Number
					in AME ₁₂
1	8	19	8	19	111
2	8	19	20	27	63
з	20	27	20	27	53
4	20	27	28	49	88
5	28	49	28	49	241
6	28	49	50	81	327
7	50	81	50	81	297
8	50	81	82	125	664
9	82	125	82	125	161
10	82	125	126	169	312
\mathbf{la}	8	19	8	13^{n}	42
1b	8	19	14 ⁿ	19	69
8a	50	81	82	89°	182
8b	50	63 *	90 ^a	125	62
Sc	64^n	81	90 °	125	420
10a	82	125	126	139^{n}	152
10Ь	82	125	140^{n}	169	160

$$SEM_{F-Spin} = (B_{00} + B_{01}Z + B_{02}Z^2)$$

$$+(B_{10}+B_{11}Z+B_{12}Z^2)F_0$$

 $+(B_{20}+B_{21}Z+B_{22}Z^2)F_0^2.$



NEW RESULTS

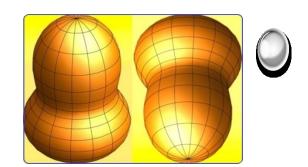
TABLE II. F-Spin₁₂ and F-Spin_{12S} Coefficients and Fit Parameters

Zone	Boo	B_{01}	B_{02}	B_{10}	B_{11}	B_{12}	B_{20}	B_{21}	B_{22}	χ^2
	$x10^3$	$x10^{1}$	$x10^{-1}$	$x10^{2}$	$\mathbf{x}10^{0}$	$x10^{-1}$	$x10^{1}$	$x10^{\circ}$	$x10^{-1}$	
1	0.0147900	-0.1452416	0.4285861	0.1183917	-1.6121992	0.5694757	-1.0610863	1.8878219	-0.7900485	0.88
2	-0.0475336	0.7870946	-3.0531705	0.6054538	-8.6012758	3.2322905	-2.4266262	2.9444939	-0.9753579	0.17
3	-0.0741829	0.7367648	-1.7272693	-0.8492452	6.4960763	-1.1991330	-3.4099642	2.4420547	-0.4308491	0.18
4	-0.0863218	0.7171904	-1.4457002	0.7306156	-6.0531135	1.2234365	4.4280193	-3.4529176	0.6652815	0.16
5	-0.0977425	0.5425733	-0.7258019	0.0751298	-0.7473322	0.1320527	0.3513260	-0.2106814	0.0237564	0.12
6	-0.0811950	0.4234495	-0.5236430	0.0831527	-0.6586171	0.1074919	-0.5821897	0.2747768	-0.0346648	0.11
7	-0.2836332	0.9055215	-0.7127516	-0.7886907	2.3032209	-0.1670863	-0.6533741	0.1790153	-0.0125753	0.10
8	-0.1153739	0.3432309	-0.2525416	-0.0865233	0.1532584	-0.0027881	0.6698855	-0.1831231	0.0120209	1.18
9	-1.7106991	3.8622297	-2.1788232	-3.6607297	8.1261257	-0.4526118	-1.7925891	0.3840887	-0.0208027	0.03
10	-0.6157849	1.3006683	-0.6877197	-3.8641512	8.1970897	-0.4339413	-4.9044329	1.0658861	-0.0578951	0.95
\mathbf{la}	-0.0283268	0.6574424	-3.1936856	0.1033252	-3.6748069	2.5282586	-1.4860543	2.5421077	-1.3537825	0.37
1Ь	-0.0274703	0.4902454	-1.9057283	0.5251396	-8.5107438	3.2539922	-0.0939506	0.8355109	-0.4825100	0.29
8a	-0.3871140	1.2628455	-1.0226552	0.0670634	-0.6962423	0.0953547	0.2088205	-0.0473826	0.0007183	0.04
8b	-0.0261230	0.1187289	-0.1234234	-1.7651592	5.7003851	-0.4617881	6.3602980	-2.0576716	0.1674703	0.08
8c	0.0525327	-0.1335492	0.0857013	0.6845233	-1.8308691	0.1234314	-0.8907357	0.2746192	-0.0209872	0.16
10a	-1.1041726	2.4026883	-1.3075806	0.5074829	-1.7769501	0.1343399	-4.0551190	0.9572352	-0.0569254	0.04
10b	0.0500503	-0.0923226	0.0390522	0.7830141	-1.5869912	0.0793818	-1.9350190	0.3968104	-0.0199591	0.04

Neutron Number

We have obtained expression describing to the second secon

and to accommodate particle and/or hole interpretations of the valence nucleons.


A smooth dependence of the microscopic component of the nuclear binding energy has been obtained using a simple quadratic expansion of the third projection of the F-spin and the proton number Z. This allows for the fit of 2317 nuclear masses using 14 common

shell zones with an overall standard deviation of 324 keV.

The predictive power of the new approach is discussed, and tables are included for the predictions of masses which are presently unmeasured, or which have considerable experimental uncertainties.

