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ORIGIN AND DEFINITION OF F-SPIN
THE NUCLEAR STRUCTURE 

How are complex systems built from a few, simple 

ingredients?

- Shell Structure – number of particles in each shell, magic numbers

- Pairing – pairs of particles

-Collective modes

Excitations of the nucleons 

in the valence shells

Vertical classification

Shell Structure

Horisontal classification



.

GROUP THEORY

How to discover the simplicity in the nuclear spectral 

properties? The manifestation of simplicity is 

Symplicity in complexity

,

Symmetry

•chains of group-subgroup structures 

leads to exact analytic solutions for the eigenvalue leads to exact analytic solutions for the eigenvalue 

problemsproblems..

Classification of 

the basis states

Hamiltonians and 

interactions

Dynamic symmetries apply to purely bosonic or purely 

fermionic systems. Supersymmetries

the language of symmetries



many-particle   

kinetic energy  

many-particle   

kinetic energy  

Angular 

momentum

Angular 

momentum

mass quadrupole 

moment

mass quadrupole 

moment

monopole and 

quadrupole collective 

excitations

monopole and 

quadrupole collective 

excitations

The symplectic symmetry includes all this!

Symplectic Dynamical Symmetries

Change the number of particles, biger represantation spaces

i,j space coordinates, s

vorticity

(from irrotational to rigid rotor flow)



Realisation of the Algebras

[una, u+
m]=

n
m a

u+
nβ uma

a=1/2, n,m=l,l-1,…-l+1,-l

F=1/2

(F0=α=1/2) 

(F0= α= -1/2) 

l=1, n,m= -1,0,1 vectors IVBM

l=0, n,m= 0 S-, l=2, n,m= 0,1,2 D-boson

IBM

1

IBM

2

l=0, n,m= 0 scalars

p boson

n boson

F-spin

spinors

u+
n a uma

a=1/2, k,m=l,l-1,…-l+1,-l

U
α
(K)

qm~pj

in terms of boson creation and annihilation operators



U(2)

Sp(4,R)
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Example

N t = Nπ + N
ν

F
0

= ½(N
π

– N
ν
)

│π,ν = (π
+
)
Nπ

(ν
+
)
Nν 

│0 

Bosons

Reduction Operators

Basis states

Casimir invariants

l=0, α=±½

Sp(4,R)

Nπ= π+ π Nν= ν+ ν

Algebra generators

Exhatations of the 

nucleons in the 

valence shells



PHYSICAL INTERPRETATION OF THE 

ALGEBRA GENERATORS

The F-spin group UF(2)

N=  † = 1/2(Z-Z
min

)

N =  † =1/2(N –N
min

)

Uπ(1)

Uν(1)

Number of proton and neutron valence pairs

Zmin and Nmin the numbers of protons and neutrons of the double 

magic nucleus at the beginning  of the shell

Z and N are the number of proton and neutron for a given nucleus.
U(1,1)

P+ = A0 =  †  †,

P- =  

N t = Nπ + Nν



FF00 --22 --11 00 11 22 33

……

00 |0,0 |0,0 
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Vacuum |0

Rows – fixed NNt t =N=Npp+N+Nnn

Columns-fixed FF0 0 = = NpNp--NnNn

Mapping on the 

nuclei from a 

major shell 

Sp(4,R) classification scheme

Even-even U(1,1)

Sp(4,R)

U(1)U(1)
F0 Nt

F0

U(2)

Nt

K= 1



Subshell



Subshell
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Its representations 

contain the spectra of 

a set of nuclei

H=a(Ki) V(xi, Lm)

 

Group of Dynamical Symmetry

Classification Group

Classification quantum numbers

Define the 

interactions

Generalized Dynamical Group

Its representations contain 

the spectra of collective 

states of a given nucleus

Sp(4,R) classification scheme

PhasesPhase transitions

Control Parameters



EL=a(Ki)L(L+ω) Function on the classification 

quantum numbers

Geometrical parameter
R2(ω)=2+

4

(2+ ω)U(5)
X(5)

SU(3)

O(6)

E(5)



σ = 45 keV

χ2 = 1.0001

S. Drenska, A. Georgieva, 

V. Gueorguiev, 

R. Roussev and P. Raychev,

“Unified description of the low l

ying states of the ground bands of 

even-even nuclei”, 

Phys. Rev. C 52, (1995) 1853.

927 low lying 

states of 

271 nuclei 

from

5 major shells



GENERALIZED REDUCTION SCHEME

OF THE IBM2

U(12) U(2)Up+n(6)

U
p
(6)  U

n
(6)

Sp(24,R) Sp(4,R)  SO(6)

U(6,6) SUpn(6)

IBM

2

IBM

1

U(3)

O(5)

Upn(3)

SO(3)

U(5)

U(1,1)

Sp(4,R) classification 

scheme

Mapping on the 

nuclei from a 

major shell 

U
p
(6)  U*

n
(6)

two-fluid (neutrons 

and protons),

finite N system



B(E2; 2+
 0+ )

-Collective modes



PropertyProperty U(5)U(5) E(5)E(5) O(6)O(6) X(5)X(5) SU(3)SU(3)



RRrr=E=E44/E/E22

20203030

2.002.00

11,1211,12

2.202.20

66

2.502.50

3,43,4

2.912.91

11

3.333.33

RRvv=E=E00/E/E22 3.033.03 5.675.67
Other important properties

B(E2) transition strengths

 =1 mid shell Deformed nuclei SU(3)

1<  <20 ?Transitional nuclei? O(6)

20<  closed shell Spherical nuclei U(5)

Phase/Shape transitions

Critical Point Symmetries



Unified Right Diagonals
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E(5); N=88 - third diagonal
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Theoretical predictions of the critical points signatures

and their corresponding experimental values for the nuclei in the:

N=88 isotonic chainN=90 isotonic chain

148
Nd 152

Gd

156
Er

150
Nd

150
Sm

154
Gd

156
Er

X(5)

E(5)



Evaluation of the microscopic 

component of the nuclear binding 

energy

as a function of F-spin and the proton   

number Z

in the nuclear shells



Semi – empirical Microscopic Mass

SEM = M
exp

- E
macro

M
exp

– experimental ground-state atomic mass-excess

E
macro

= M
th

– E
mic

M
th

– calculated ground-state atomic mass-excess from 

FRDM
E

mic
– calculated ground-state microscopic energy from 

FRDM– Finite-Range Droplet Model ([5] P. MЁoller, J. R. 

Nix, W. D. Myers, and W. J. Swiatecki, Atomic Data and Nuclear Data Tables 

59, 185 (1995).)

Isolates the mass effects from the valence space



Comparing the P systematics and F-spin

classification 

P=

N
π

N
ν

Nπ + N
ν

average number of proton-neutron

interactions per a valence nucleon

The relation between P and F
0

as classification parameters
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Fit of SEM as a linear function of P for the 

even and odd A nuclei in each isotopic chain

SEM
i
=B

0
+B

1
P

i

Result - Set of two coefficients B0 and  B1for each isotopic chain

28 ≤ Z ≤ 34

28 ≤ N ≤ 49



Fit of SEM as a parabolic function of F
0

for the even and odd A

nuclei in each isotopic chain

SEM
i
=B

0
+B

1
F

0i
+B

2
F

0i

2

28 ≤ Z ≤ 34

28 ≤ N ≤ 49



Comparison of the differences of the M
exp

with the evaluation of FRDM and SEM(F
0
)





Generalization of the fit for all shells

Taking into account subshells



NEW RESULTS





We have obtained expression describing the

relationship between P and F-spin.

A smooth dependence of the microscopic component of the nuclear 

binding energy has been obtained using a simple quadratic 

expansion of the third projection of the F-spin and the proton number 

Z. This allows for the fit of 2317 nuclear masses using 14 common 

shell zones with an overall standard deviation of 324 keV. 

F-spin is generalized for all even and odd A nuclei 

and to accommodate particle and/or  hole 

interpretations of the valence nucleons.

Conclusions

The predictive power of the new approach is discussed, and 

tables are included for the predictions of masses which are 

presently unmeasured, or which have considerable

experimental uncertainties.




