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Shapes
short overview
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Geometric shapes

Mathematician and statistician David George Kendall writes [*]:

In this paper `shape' is used in the vulgar sense, and means what
one would normally expect it to mean. [...] We here de�ne `shape'
informally as `all the geometrical information that remains when
location, scale [3] and rotational e�ects are �ltered out from an
object.'

[*] Kendall, D.G. (1984). �Shape Manifolds, Procrustean Metrics,
and Complex Projective Spaces�. Bulletin of the London
Mathematical Society 16 (2): 81-121. doi:10.1112/blms/16.2.81.
[3] scaling = uniform scaling only.
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Non-rigid shapes

Numerical Geometry of Non-Rigid Shapes by Alexander M.
Bronstein, Michael M. Bronstein, Ron Kimmel
Two remarks on the problem: Non-rigid shape similarity. How to
compare shapes that are susceptible to deformations?

1. One tries to look for quantitative measure of "distance"
between two shapes.

2. In many cases, there exists a set of deformation invariants for a
given body (deformation invariant similarity).
For example: movements of �ngers in the hand. The length of
�ngers remain constant (partial isometries)
These partial isometries are the deformation invariants. All
deformation invariants de�ne an intrinsic geometry of the shape.
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Observables and shape parametrization 1/3

Let q1, q2 and q3 be curvelinear coordinates in R3.

General 'geometric shape'/surface equation in R3:

qk = qk(u, v) where k =, 1, 2, 3.

Assume qk ∈ L2(S), where the compact subset S ⊂ R2.

Let the set {en(u, v)} gives an orthonormal basis in L2(S) having an
appropriate physical meaning then

qk(u, v) =
∑
n

αn,k en(u, v).
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Observables and shape parametrization 2/3

The expansion coe�cients:

αn,k =

∫
S

dudv ρ(u, v) en(u, v)?qk(u, v)

are new variables describing the nuclear surface in terms of this basis.

An example, multipole collective variables:

Coordinate space: {q1 = r , q2 = θ, q3 = φ}, where u = θ, v = φ,
Surface: r = R(θ, φ) ∈ L2(SO(2)).

Observables: Â1 = Ĵ2, Â2 = Ĵz . The basis {en(u, v) = Ylm(θ, φ)}:

R(θ, φ) = R0(1 +
∑
λ,µ

α
(lab)?
λµ Yλµ(θ, φ)).
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Observables and shape parametrization 3/3

Physical meaning of the basis required for parametrization of
surfaces one can achive, for example, by:

• Introduce two commuting quantum observables (A1,A2)
(deformation invariants) de�ned in L2(S). Construct the
eigenvectors of these obervables and use them as the required
basis.

• Use the appropriate symmetries and basis of the corresponding
irreducible representations.

• Construct by hand vectors with required properties.

• ????
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Quantum shape � di�used shapes

Quantum shape = 'cloud' ⇐ |Ψ(α; x)|2

A few unsolved problems:
• How to de�ne �di�used shapes� ≈ �quantum shapes�?
O = ∂{x : |Ψ(α; x)|2 ≥ ε} ? How to parametrize such object?
∂ = boundary of a set.

• What are invariants of nuclear deformations?
• What is �distance� between nuclear shapes? Maybe a di�erence
of some characteristic energies related to these shapes?

Some di�culties:

• The problem of �monster shapes� � relation between geometric
de�nition of the deformation parameters and �shapes� related
to quantum states.

• Center of mass coupling to deformation parameters.
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Example: Problem of �the monster shapes�

An example, multipole collective variables:

Coordinate space: {q1 = r , q2 = θ, q3 = φ}, where u = θ, v = φ,
Surface: r = R(θ, φ) ∈ L2(SO(2)).

Observables: Â1 = Ĵ2, Â2 = Ĵz . The basis {en(u, v) = Ylm(θ, φ)}:

R(θ, φ) = R0(1 +
∑
λ,µ

α
(lab)?
λµ Yλµ(θ, φ)).

Has R(θ, φ) to be interpreted as real nuclear surface? The method
requires (in this case) only a function on the 2D sphere.
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Figures: �Nuclear surfaces� 1/4

α1µ as the shift of the quadrupole shape ?
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Figures: �Nuclear surfaces� 2/4
Monster quadrupole shapes !
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Figures: �Nuclear surfaces� 3/4
Regular quadrupole shapes.
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Figures: �Nuclear surfaces� 4/4
Regular quadrupole tetrahedral shape (left), strange
quadrupole-octupole shape (right)
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Hamiltonian and 'shapes'

Nillson Model, deformation by frequences

H =
−~2

2m
4+

m

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

Geometric interpretation:

ωi = ω0

r0

ai
, ai = ellipsoid axis,

ωxωyωz = ω3

0
, volume conservation.

'dist' deformed Hamiltonians

H =
−~2

2m
4+ V (dist(~r ,R(α; θ, φ))

Equipotential surfaces as shapes?
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Hamiltonian and 'shapes'

Shifted oscillator

H = Tcoll +
m

2
ω2

0
(ξ − ξ0)2.

Geometric interpretation:

• For ξ0 6= 0 = deformed oscillator (what shape?).

• For ξ0 = 0 = usually called �spherical�.

• However, usually 〈ψ|ξ2|ψ〉 6= 0 � dynamical deformation.

• The standard Bohr Hamiltonian do not contain any
deformation parameter, the collective variable are at the same
time deformation parameters. What is the corresponding shape:
a) this one obtained from the potential energy?
b) di�used 'shape' obtained from the collective wave function?
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Geometry versus Symmetry

Example: GCM+GOA
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Rigid rotor: GCM+GOA 1/4

The generating function:

|Ω〉 = R̂(Ω)|α〉

where |α〉 � axially symmetric.

H(α) � axially symmetric intrinsic Hamiltonian (at the moment
when both Laboratory and Intrinsic frames coincide)
At any other �moment� the Hamiltonian is

H ′ = R̂(Ω)H(α)R̂(Ω)† = R̂(Ω1,Ω2, 0)H(α)R̂(Ω1,Ω2, 0)†

Ω3 = 0 because of axial symmetry.
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Rigid rotor: GCM+GOA 2/4
The rotor Hamiltonian:

Hrot =
1

2
J −1(α)Ĵ2 + V (α)

The eigenenergies:

Erot;J =
1

2
J (α)−1 J(J + 1) + V (α)

The eigenfunctions:

r JM,K=0
(Ω) =

√
2J + 1DJ?

M0
(Ω)

Here: the axial symmetry implies only K = 0.
The Hamiltonian Hrot is SO(3) invariant in respect to Lab. rotations.
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Rigid rotor: GCM+GOA 3/4

The generating function:

|Ω〉 = R̂(Ω)|α〉

where |α〉 = e−iπĴk |α〉
k = 1→ x , k = 2→ y , k = 3→ z and |α〉 � D2 symmetric.

H(α) � D2 symmetric intrinsic Hamiltonian (at the moment when
both Laboratory and Intrinsic frames coincide)
At any other �moment� the Hamiltonian is

H ′ = R̂(Ω)H(α)R̂(Ω)† = R̂(Ω)H(α)R̂(Ω)†
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Rigid rotor: GCM+GOA 4/4
The rotor Hamiltonian:

Hrot =
1

2

3∑
k=1

J −1k (α)(Ĵk)2 + V (α)

It can happens that: Jx(α)−1 = Jy (α)−1

Than the eigenenergies:

Erot;JK =
1

2

[
J(J + 1)− K 2

Jx(α)
+

K 2

Jz(α)

]
+ V (α)

And the eigenfunctions for K 6= 0 :

r
(±)J
M,K (Ω) =

1√
2

[
r JMK (Ω)± r JM,−K (Ω)

]
�Macroscopic� axial symmetry implies K ≥ 0.
The Hamiltonian Hrot is SO(3) invariant in respect to Lab. rotations.
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CONCLUSIONS - Shapes

• Artistic invention in creating 'shapes' in nuclear physics.

• Many very di�erent parameters are called �deformation
parameters�.

• Problem of interpretation of these parameters in terms of a
distribution of nucleons in a nucleus i.e. shapes.

• Symmetries can be considered as �deformation invariants�.

• Symmetry of the Hamiltonian and symmetry of quantum shape
are often di�erent.
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Problems

???
?????????
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