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Introduction

→ Nuclear mean field techniques are common approaches to the nuclear
many-body problem.

→ Often used approaches are Nilsson or Woods-Saxon non
self-consistent mean fields.

→ Self-consistent techniques are also widely employed: Hartree-Fock
with Skyrme interaction etc.

QUESTIONS

How many terms (central + spin-orbit + tensor + ... + ... ???)

How many parameters for each term ???

What about correlations between parameters ??? → control via
regularisation methods (Singular Value Decomposition for ex.)

What is the predictive power of the theory ???
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Two-body interactions allowed by symmetry

A systematic way to construct the two-body interactions allowed by
symmetry considerations is provided by the spin-tensor decomposition.

With the help of the spin operators for two nucleons one constructs
the following 6 tensors:

S
(0)
1 = 1, S

(0)
2 = [~σa ⊗ ~σb](0), S

(1)
3 = ~σa + ~σb

S
(2)
4 = [~σa ⊗ ~σb](2), S

(1)
5 = [~σa ⊗ ~σb](1), S

(1)
6 = ~σa − ~σb

They are coupled with tensors of the same rank in configuration space
to a scalar interaction (PT=0 and PT=1 are projectors on the states
T = 0 and T = 1):

V (a, b) =
6∑

µ=1

{
[X (k)
µ ⊗ S (k)

µ ](0)PT=0 + [Y (k)
µ ⊗ S (k)

µ ](0)PT=1

}
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Tensors in configuration space X
(k)
µ

Postulating translational invariance of the NN interaction, Galilean
invariance; assuming that V (1, 2) should be symmetric under particle
exchange, and retaining only hermitian, scalar, time even terms, one
obtains the following possibilities:

{~r ⊗ ~p}(0) + {~p ⊗ ~r}(0) = −1
3 (~r · ~p + ~p · ~r), {~r ⊗ ~p}(1) = i√

2
~L, {~r ⊗ ~p}(2),

{~r ⊗ ~r}(0) = −1
3 r

2, {~r ⊗ ~r}(2), {~p ⊗ ~p}(0) = −1
3p

2{~p ⊗ ~p}(2).

Alternative combinations are:

The scalars L2, r2 and p2.

The vector ~L.

The second rank tensors {~r ⊗ ~r}(2), {~p ⊗ ~p}(2) and {~L⊗ ~L}(2).
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Examples of realisations

Combining different terms of the Spin-Tensor Decomposition using
projection operators Π onto the singlet (s), triplet (t), even (e), odd (o)
states leads to central forces∗:

V (1, 2) = V0f (r/r0)
(
aetΠ

r
eΠσt + aesΠ

r
eΠσs + aotΠ

r
oΠσt + aosΠ

r
oΠσs

)
Different combinations of coefficients (aet , aes , aot , aos) are encountered in
the literature:

Wigner (1, 1, 1, 1), Kurath (1, 0.6, -0.6, -1), Serber (1, 1, 0 0), Rosenfeld
(1, 0.6, -0.34, -1.78) . . .

∗P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer, New York (1980)
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Shell-Model framework

In the Shell-Model, Spin Tensor Decomposition has been used to extract
scalar (central) V0, vector (LS and ALS) V1, and tensor V2 contributions
out of the total two-body matrix elements V .

LS matrix elements of Vk can be given in function of the total LS matrix
elements:

〈AB; LSJT |Vk |CD; L′S ′JT〉 = (−)J(2k + 1)

{
L S J
S ′ L′ k

}
×
∑
J′

(−)J
′
(2J ′ + 1)

{
L S J ′

S ′ L′ k

}
〈AB; LSJ ′T |V |CD; L′S ′J ′T〉 ,

where A ≡ (na, la).

B.A. Brown, W.A. Richter and B.H. Wildenthal, J. Phys. G: Nucl. Phys. 11 (1985) 1191

B.A. Brown, W.A. Richter, R.E. Julies and B.H. Wildenthal, Ann. Phys. 182 (1988) 191

N.A. Smirnova, B. Bally, K. Heyde, F. Nowacki and K. Sieja, Phys. Lett. B686 (2010) 109

6 / 30



Applications to the Shell-Model

In turn, the total LS matrix elements can be expressed in terms of the jj
matrix elements as

〈AB; LSJ ′T |V |CD; L′S ′J ′T〉 = [(1 + δAB)(1 + δCD)]−1/2

×
∑

ja, jb, jc , jc


la 1/2 ja
lb 1/2 jb
L S J ′




lc 1/2 jc
ld 1/2 jd
L′ S ′ J ′


× [(2ja + 1)(2jb + 1)(2jc + 1)(2jd + 1)]1/2

× [(1 + δab)(1 + δcd)]1/2〈ab; J ′T |V |cd ; J ′T〉 ,

where a ≡ (na, la, ja).
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Parametric correlations: Woods-Saxon potential

LEFT: no correlation between the central potential-depth V c
0 and

diffusivity parameter ac0.

RIGHT: strong correlation between the central potential-depth V c
0 and

radius parameter r c0 .
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(Monte-Carlo analysis for 208Pb).

From J. Dudek, B. Szpak, A. Dromard, M.G. Porquet, B. Fornal and A. Gozdz,

Int. J. Mod. Phys. E21 (2012) 1250053
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Parametric correlations: Skyrme-Hartree-Fock
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Int. J. Mod. Phys. E21 (2012) 1250053
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Singular Value Decomposition (SVD)

One sometimes deals with more parameters (e.g. single-particle
energies and two-body matrix elements) than data.

Parameters may not be well determined by data, or may show
correlations.

Way out: in the least square fit, one restricts the number of relevant
parameters to the “orthogonal parameters”. The parameters are
ordered according to they accuracy and not well defined parameters
can be selected out.

Method known as the Linear Combination† or Diagonal Correlation
Matrix∗ Method.

In this same spirit, we make use, in the Mean-Field approach, of the
Singular Value Decomposition method.

†W. Chung, Ph. D Thesis, Michigan State University (1976),

B.A. Brown, W.A. Richter, R.E. Julies and B.H. Wildenthal, Ann. Phys. 182 (1988) 191

∗P.J. Brussaard and P.W.M. Glaudemans, Shell-Model Applications in Nuclear Spectroscopy,

North-Holland, Amsterdam (1977)
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Least Square Problem and SVD

→ Consider the least-square problem (Wj are some weights factors):

χ2(~p) =
1

m − n

m∑
j=1

Wj [eTheor.
j (~p)− eExp.j ]2

where there are m data points and n parameters.

→ We consider the problem referred to as overdetermined: m > n.

→ Linearization of the problem via Taylor expansion:

eTheor.
j (~p) ' eTheor.

j (~p0) +
n∑

i=1

(∂eTheor.
j

∂pi

)
~p=~p0

(pi − p0,i)

→ Minimising χ2(~p) with respect to the parameters pi leads to the set of
so-called normal equations:

(JT J) (~p − ~p0) = JT~y or (JT J) ~p = JT~b

with yj ≡
√

Wj [e
Exp.
j − eTheor.

j (p0)] and ~b ≡ J~p0 + ~y .
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Least Square Problem and SVD

The design matrix or generalised Jacobian matrix Jm×n reads

Jji ≡
√

Wj Iji , Iji ≡
(∂eTheor.

j

∂pi

)
~p=~p0

.

Defining the residual vector ~r ≡ J~p − ~b, the merit function can be
expressed as

χ2(~p) =
1

m − n

m∑
j=1

r2
i =

1

m − n
‖J~p − ~b‖2

→ Minimising chi-square means solving the normal equations, or finding p
that minimises the norm of the residual ‖J~p − ~b‖.

J. Toivanen, J. Dobaczewski, M. Kortelainen and K. Mizuyama, Phys. Rev. C78, 034306 (2008)
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Least Square Problem and SVD

→ The difficulty lies in the (im)possibility of finding (JT J)−1.

→ Singular Value Decomposition helps !

→ For a (real) matrix Jm×n of rank r , there exist two orthogonal matrices
Um×m, Vn×n, and Sm×n = diag(w1,w2, . . . ,wr , 0 . . . 0) (wi singular values
w1 ≥ w2 ≥ . . . ≥ wr > wr+1 = . . . = wn = 0):

J = USV T

→ Formal least-square solution of minimal norm is given by:

~p = J† ~b

where J† ≡ V S† UT denotes the Moore-Penrose pseudo-inverse of J,
with S†n×m = diag(1/w1, 1/w2, . . . , 1/wr , 0 . . . 0).
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Least Square Problem and SVD

The Moore-Penrose pseudo-inverse verifies the four conditions:

J J† J = J

J† J J† = J†

(J J†)T = J J†

(J† J)T = J† J

If J is of full rank (i.e. r = n < m), then (JT J) can be inverted, and
J† = (JT J)−1JT .

Singular values = square-roots of the eigenvalues of (JT J).

The rank of the matrix J is equal to the number of non-zero singular
values.

Columns of U are orthonormal eigenvectors of (JJT ).

Columns of V are orthonormal eigenvectors of (JT J).
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Regularization Procedure: Truncated SVD

In practice:

→ There might be some poorly determined parameters or correlated
parameters, leading to small singular values, and thus the inverse problem
gets ill-posed !

→ The remedy proposed in the SVD procedure is to replace the
corresponding large inverse in S† by zero, forgetting about the associated
parameter !

→ The least-square minim. of ‖J~p − ~b‖2 reads ‖USV T ~p − ~b‖2.

Introducing new independent parameters ~x ≡ V T ~p and data ~z ≡ UT~b,
one minimises

‖S~x − ~z‖2 =
r∑

i=1

|wixi − zi |2

which is solved with xi = zi/wi for i = 1, . . . , r and arbitrary for
i = r + 1, . . . , r .
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Regularisation Procedure: Truncated SVD

→ Finally, one can construct the solution having a minimal norm, which,
after ignoring contributions from small singular values:

~p =

η∑
i=1

~ui · ~b
wi

~vi

where ~ui and ~vi denote columns vectors of U and V , and η represents the
regularisation parameter.

This Truncated Singular Value Decomposition (TSVD) constitutes one
possible regularisation procedure of the ill-posed inverse problem.

M. Kern, Problèmes Inverses, Ecole Supérieure d’Ingénieurs Léonard de Vinci, 2002-2003
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Mean-Field from effective phenomenological NN
interactions

Within the Skyrme-Hartree-Fock formalism, the spin-orbit, the central and
the tensor parts of the interaction contribute to the spin-orbit potential:

V̂SO ∼
1

r
Wq(r) (~l · ~σ)

(ρ = particle density, J = vector spin-orbit density).

Wq =
W0

2

(
2
dρq

dr
+

dρq′

dr

)
︸ ︷︷ ︸

from NN spin-orbit interaction

+
(
αJq + βJq′

)
︸ ︷︷ ︸

from NN central & NN tensor interaction

D. Vautherin and D.M. Brink, Phys. Rev. C5 (1972) 626

F. Stancu, D.M. Brink and H. Flocard, Phys. Lett. B68 (1977) 108
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Effective self-consistent spin-orbit potential

Effective self-consistent spin-orbit potentials can be used in spherical
Woods-Saxon mean field calculations∗ (q stand for proton and neutron
form factors):

Wq =
(
λqq dρq

dr
+ λqq′ dρq′

dr

)
+
(
αJq + βJq′

)
with

λqq = λqq′ = λ > 0

and
α + β ' 0; α < 0; β > 0

∗H.M., J. Dudek, K. Rybak and M.G. Porquet, Acta Phys. Pol. B40 (2009) 597
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Effective self-consistent spin-orbit potential

Total “ordinary” and “tensor” spin-orbit potentials for protons in
spin-saturated 40Ca (left) and spin-unsaturated 48Ca (right) nuclei:
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→ V p
ρ = r2(1/r)λ[dρp/dr + dρn/dr ]; V p

T = r2(1/r)[αJp + βJn] = r2(1/r)α[Jp − Jn]

→ For neutrons we would have V n
ρ = V p

ρ and V n
T = −V p

T

→ The proton “tensor” potential is almost zero in 40Ca nucleus, but significant and positive
in 48Ca. This leads to an “abnormal” proton spin-orbit splitting†.

†Wong, Nucl. Phys. A108 (1968) 481
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Two-body NN spin-orbit interaction

Consider a two-body nucleon-nucleon spin-orbit interaction:

V̂ SO = V (‖~r − ~r ′‖) (~r − ~r ′) ∧ (~p − ~p ′) · (~σ + ~σ ′)

Expanding, we obtain the sum of 8 terms:

V̂ SO = V (‖~r − ~r ′‖) (~r ∧ ~p ) · ~σ → T1

− V (‖~r − ~r ′‖) (~r ′ ∧ ~p ) · ~σ → T2

− V (‖~r − ~r ′‖) (~r ∧ ~p ′) · ~σ → T3

+ V (‖~r − ~r ′‖) (~r ′ ∧ ~p ′) · ~σ → T4

+ V (‖~r − ~r ′‖) (~r ∧ ~p ) · ~σ ′ → T5

− V (‖~r − ~r ′‖) (~r ′ ∧ ~p ) · ~σ ′ → T6

− V (‖~r − ~r ′‖) (~r ∧ ~p ′) · ~σ ′ → T7

+ V (‖~r − ~r ′‖) (~r ′ ∧ ~p ′) · ~σ ′. → T8
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Hartree potentials for the spin-orbit interaction

Formulation of the Hartree-Fock equations in coordinate space:

− ~2

2m
∆φi (q) + UH φi (q)−

∫
UF φi (q

′) dq ′ = εiφi (q).

Contribution of the 8 terms in function of the particle density by ρ(~r), the
current density by ~ (~r), the spin density by ~s (~r ) and the vector spin
current density by ~Jq(~r):

ÛSO
H,T1

=
[ ∫

d 3~r ′V (‖~r − ~r ′‖)ρ(~r ′)
]
~̀ · ~σ

USO
H,T2

=

[
−
∫

d 3~r ′V (‖~r − ~r ′‖) ρ(~r ′)~r ′
]
∧ ~p · ~σ

ÛSO
H,T3

=

{
~
i

∫
d 3~r ′V (‖~r − ~r ′‖)

[
1
2
~∇′ρ(~r ′) + i~ (~r ′)

]}
· (~r ∧ ~σ)

USO
H,T4

=
~
i

{∫
d 3~r ′V (‖~r − ~r ′‖)~r ′ ∧

[
1
2
~∇ ′ρ(~r ′) + i~ (~r ′)

]}
· ~σ
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Hartree potentials for the spin-orbit interaction

ÛSO
H,T5

=
[ ∫

d 3~r ′V (‖~r − ~r ′‖) ~s(~r ′)
]
· ~̀

ÛSO
H,T6

=

[ ∫
d 3~r ′V (‖~r − ~r ′‖) ~r ′∧ ~s(~r ′)

]
· ~p

ÛSO
H,T7 = −

{∫
d 3~r ′V (‖~r − ~r ′‖)

[
~ ~J(~r ′) + 1

2~p
′∧ ~s(~r ′)

]}
· ~r

ÛSO
H,T8

=

∫
d 3~r ′V (‖~r − ~r ′‖)~r ′ ·

{
~ ~J(~r ′) + 1

2

[
~p ′ ∧ ~s(~r ′)

]}
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Systems preserving spherical symmetry and
time-reversal

For systems preserving spherical symmetry and time-reversal, only terms
T1 and T2 survive, as well as T7 and T8:

ÛSO
H,T1

+ ÛSO
H,T2

=
[ ∫

d 3~r ′V (‖~r − ~r ′‖)ρ(r ′)
(

1−
~r ′ · ~r
r2

)]
︸ ︷︷ ︸

“full” form factor F (r)

~̀ · ~σ

ÛSO
H,T7 + ÛSO

H,T8 = ~
∫

d 3~r ′V (‖~r − ~r ′‖) ~J(~r ′) · (~r ′ − ~r)

NB: The latter expression contributes to a different Hartree mean-field
than the spin-orbit, and is not discussed here.
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Blin-Stoyle∗ approximation

The form factor F (r) can be expressed as

F (r) = −
∫

d 3~r ′V (‖~r − ~r ′‖)ρ(~r , ~r ′).

Writing ρ(~r , ~r ′) = ρ′(~s, ~r) with ~s = ~r ′ − ~r , and performing a Taylor
expansion of ρ′(~s, ~r) about ~s = 0 one obtains, with the help of the mean
particle density in closed shell orbitals ρnl(r):

FBS(r) = K
1

r

dρ(r)

dr
,

where

K = −4π

3

∫ +∞

0
V (s)s4ds.

∗R.J. Blin-Stoyle (1955) Phil. Mag. 46 973.
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Fermi shape density distribution

? We consider a Fermi shape density distribution:

ρ(r) = ρ◦
1

1 + exp[(r − R◦)/a]
.

where R◦ = r◦A
1/3 with r◦ = 1.3 fm, ρ◦ = A/[ 4

3πR
3
◦ ] (A = mass number)

and a = 0.7 fm.

? The spin-orbit form factor corresponding to a two pion exchange is
expressed as:

V (s) = CSO

[e−µs
µs

]2

? In this case K can be given in analytical form:

K = −π
3

CSO

µ5

and

FBS(r) = −π
3

CSO

µ5

[
− 1

aρ◦
ρ2(r) exp[(r − R◦)/a]

]
.
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Parameter determination

? We take µ = (mπc
2)/(~c), the inverse of the Compton wavelength of

the pion: µ = 1/1.4 fm−1.

? Therefore, the only free parameter is CSO .

? A rough estimate can be obtained with the help of the Woods-Saxon
spin-orbit form factor

FWS(r) = λSO

[ ~
2mc

]2 1

r

d

dr

[ −V◦
1 + exp[(r − RSO)/aSO]

]
,

with

V◦ = V
[
1± κ

(N − Z

N + Z

)]
(“+” for protons, and “−” for neutrons).

→ “Full” form factor F (r) is calculated such as to coincide with the value
of FWS(r = RSO). For given µ = 1/1.4 fm−1 one gets CSO = −53.4 MeV.
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Proton spin-orbit form factors

COMPARISON OF WOODS-SAXON, F (r) AND BLIN-STOYLE FORM FACTORS

µ = 1/1.4 fm−1 FIXED; obtained value CSO = −53.4 MeV
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Proton F (r) spin-orbit form factor

SENSITIVITY OF F (r) WITH RESPECT TO µ

CSO = −53.4 MeV FIXED; µ◦ = 1/1.4 fm−1
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Proton F (r) spin-orbit form factor

SENSITIVITY OF F (r) WITH RESPECT TO CSO

µ = 1/1.4 fm−1 FIXED; CSO,0 = −53.4 MeV
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Conclusions and outlook

CONCLUSIONS AND PERSPECTIVES

The issue of reducing the number of parameters in the mean-field
parametrizations has been addressed.

Construction of a mean-field spin-orbit potential from the
nucleon-nucleon two-body spin-orbit interaction is discussed.

Complete form factor calculations have been compared to
approximate Blin-Stoyle and phenomenological Woods-Saxon
potentials, and coupling constant CSO has been determined.

Exchange (Fock) terms have to be considered.

Isospin dependent spin-orbit mean-field interaction must be added.

Investigations pushed further to include tensor interaction.

Extension to deformed systems.

THANK YOU FOR YOUR ATTENTION !
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