Exact solutions of the extended pairing interactions in Bose and Fermi Many-Body systems

> Feng Pan Liaoning Normal Univ.

SDANCA-15, Sofia, Bulgaria

Oct. 8-10, 2015

Content

 E₂ algebraic structure
 Application to Interacting Boson models
 Spherical mean-field plus an extended monopole pairing model
 Summary 1. E₂ algebraic structure Let b, b^+ be annihilation and creation operator of bosons satisfying $[b, b^+] = 1, [b^+b, b] = -b$, $[b^+b, b^+]=b^+$. One can introduce functionals $\tilde{b} = f(b^+b)b, \qquad \tilde{b}^+ = b^+f(b^+b),$ $f(b^+b) = 1 / \sqrt{b^+b} + 1$ Then, the new algebra $\{\widetilde{\mathbf{b}}, \widetilde{\mathbf{b}}^+, n = b^+b\}$ satisfies $[n, \tilde{b}] = -\tilde{b}, [n, \tilde{b}^+] = b^+$ $[\widetilde{\mathbf{b}}, \widetilde{\mathbf{b}}^+] = \delta_{\mathbf{n}}$

Similarly, one can also do the same thing for fermion pairing algebras:

Let $N_j = \sum_{m} a_{jm}^{\dagger} a_{jm}$ be the number operator of fermions in a single-j shell and

 $S_j^{\dagger} = \sum_{m>0} (-1)^{j-m} a_{jm}^{\dagger} a_{j-m}^{\dagger}$ be the monopole pair creation operator in the j-orbit. One can fermionic E₂ algebraic with

$$\tilde{S}_{j}^{\dagger} = \frac{1}{\sqrt{(Q_{j} - \hat{S}_{j}^{0} + 1)(Q_{j} + \hat{S}_{j}^{0})}} S_{j}^{\dagger}$$

where $Q_j = \frac{1}{2}(\Omega_j - \nu_j)$ and $\hat{S}_j^0 = \frac{1}{2}(N_j - \Omega_j)$ are quasi-spin and its third component in the j-orbit.

Let $|0\rangle$ be the vacuum state satisfying $a_{jm}|0\rangle = 0 \forall j$, For the seniority $\nu_i \neq 0$ case, the lowest weight state for the quasi-spin Q_j is denoted as $|\nu_j \rho_j\rangle$ satisfying $S_j |\nu_j \rho_j\rangle = 0 \quad |Q_j, -Q_j; \nu_j \rho_j\rangle \equiv |\nu_j \rho_j\rangle$,

$$|Q_j, -Q_j + n; \nu_j \rho_j \rangle = \tilde{S}_j^{\dagger n} |\nu_j \rho_j \rangle$$

with $n = 0, 1, \dots, 2Q_j$, which satisfies

$$\begin{pmatrix} S_j^{\dagger}S_j \\ S_j^{0} \end{pmatrix} |Q_j, -Q_j + n; \nu_j \rho_j \rangle = \begin{pmatrix} n(Q_j - n + 1) \\ -Q_j + n \end{pmatrix} |Q_j, -Q_j + n; \nu_j \rho_j \rangle.$$

A set of operators $\{\tilde{S}_{j_i}, \tilde{S}_{j_i}^{\dagger}, N_{j_i}\}\ (i = 1, 2, \cdots)$ satisfy the commutation relations

$$[N_{j'}/2, \ \tilde{S}_{j}] = -\delta_{jj'}\tilde{S}_{j}, \ [N_{j'}/2, \ \tilde{S}_{j}^{\dagger}] = \delta_{jj'}\tilde{S}_{j}^{\dagger}, \ [\tilde{S}_{j'}, \ \tilde{S}_{j}^{\dagger}] = \delta_{jj'}\delta_{N_{j}0}.$$

2. Applications to Boson models
(1) The extended Bose-Hubbad model
Similar to the original BH model, we consider
an extended BH model with number-dependent
multi-site hoping terms[Int J Theor Phys (2015) 54:2204]

$$\hat{H} = -t_0 \sum_{k=1}^{\infty} \sum_{j_1 \le \dots \le j_k} \tilde{b}_{j_1}^{\dagger} \cdots \tilde{b}_{j_k}^{\dagger} \sum_{j_1' \le \dots \le j_k'} \tilde{b}_{j_1'} \cdots \tilde{b}_{j_k'} + \sum_j V(\hat{n}_j) + \sum_j \epsilon_j \hat{n}_j,$$

two groups of site-indices $\{j_1, \dots, j_k\}$ and $\{j'_1, \dots, j'_k\}$ with the restriction that no any one of $\{j_1, \dots, j_k\}$ equals to any one of $\{j'_1, \dots, j'_k\}$. (a) The superfluid phase with $V(\hat{n}_j) = 0$ and $\epsilon_j = 0 \forall j$. The ground state in this case is non-degenerate and mostly delocalized with

$$|N\rangle_{g} = \mathcal{N} \sum_{n_{1}, \cdots, n_{M}} |n_{1}, \cdots, n_{M}\rangle \qquad \mathcal{N}^{-2} = D(N, M).$$

The corresponding ground state energy is given by

$$E_{\rm g}^{\rm SF} = -t_0(D(N, M) - 1)$$

While other excited states are all degenerate with excitation energy being zero like the BCS spectrum.

The ground state probability to detect *n* particles on a given lattice site with $M = 10^5$ sites

$$P_n = \sum_{n_{i\neq 1}} |\langle n_1 = n, \{n_{i\neq 1}\}|N\rangle_{g}|^2 \qquad \rho = N/M$$

(b) General solutions

exactly solvable when ϵ_j ($j = 1, \dots, M$) are not equal one another

$$|N, \zeta\rangle = \sum_{n_1, \cdots, n_M} C_{n_1, \cdots, n_M}^{(\zeta)} |n_1, \cdots, n_M\rangle,$$

where the sum is restricted with $\sum_{j=1}^M n_j = N,$
 $C_{n_1, \cdots, n_M}^{(\zeta)} = \frac{1}{F(n_1, \cdots, n_M)},$
 $F(n_1, \cdots, n_M) = E^{(\zeta)} - t_0 - \sum_j V(n_j) - \sum_{j=1}^M \epsilon_j n_j$
 $- t_0 \sum_{n_1, \cdots, n_M} \frac{1}{F(n_1, \cdots, n_M)} = 1.$

When ϵ_i $(j = 1, \dots, M)$ are not equal one another, let $x_{\mu} = t_0 + \sum_{j=1}^{M} V(n_j) + \sum_{j=1}^{M} \epsilon_j n_j$ with $x_1 < x_2 < x_3 < \cdots < x_{D(N,M)}$, zeros of the polynomial $E^{(\zeta)}$, satisfy either the interlacing condition $x_1 < E^{(1)} < x_2 < E^{(2)} < x_3 < \cdots$ or $-\infty < x_1 < E^{(1)} < x_2 < E^{(2)} < x_3 < \cdots$ They are with in the open intervals $(-\infty, x_1), (x_1, x_2), \cdots$,

 $(x_{D(N,M)-1}, x_{D(N,M)})$ or within $(x_1, x_2), (x_2, x_3), \dots, (x_{D(N,M)}, +\infty)$.

(c) Special cases [exact ground state]

Table 1 The degree of the polynomial given by (14) for the integer filling cases with $\epsilon_j = 0 \forall j$ and $\rho = N/M = 1$ and compared with the dimension of the Hilbert subspace in full matrix diagonalization for the Hamiltonian (1) for some specific N = M cases

	Degree of the polynomial	D(N, M)
N = M = 6	9	462
N = M = 10	27	92378
N = M = 12	39	1352078
N = M = 14	54	20058300

(2) Application to the IBM

Using the $SU_d(1,1)$ and $SU_s(1,1)$ generators, we can build an extended IBM Hamiltonian (EXT) as

$$\begin{aligned} \hat{H}_{c} &= \Delta \hat{n}_{d} + \frac{\lambda}{N} (S_{s}^{+} S_{s}^{-} + S_{d}^{+} S_{d}^{-}) \\ &- g_{2} \sum_{k=1}^{\infty} \left(\tilde{S}_{s}^{+k} \tilde{S}_{d}^{-k} + \tilde{S}_{d}^{+k} \tilde{S}_{s}^{-k} \right), \end{aligned} \qquad \tilde{S}_{d}^{+} = S_{d}^{+} \frac{1}{\sqrt{(S_{d} + S_{d}^{0})(S_{d}^{0} - S_{d} + 1)}}, \quad \tilde{S}_{d}^{-} = (S_{d}^{+})^{\dagger}, \end{aligned}$$

where $\Delta = \epsilon_d - \epsilon_s > 0$ is the energy gap of *s* and *d* bosons, and $\lambda > 0$ and $g_2 > 0$ are real parameters. [Phys. Rev. C91 (2015) 034305]

the
$$\tilde{E}_2$$
 algebra $\longrightarrow [\tilde{S}^+_{\sigma}, \tilde{S}^-_{\rho}] = -\delta_{\rho\sigma}\delta_{S_{\rho}S^0_{\rho}}, [S^0_{\sigma}, \tilde{S}^\pm_{\rho}] = \pm \delta_{\sigma\rho}S^\pm_{\rho}.$

$$\begin{split} |N,\xi,\tau\alpha L\rangle &= \sum_{\xi=0}^{\frac{1}{2}(N-\tau-\tau_{5})} C_{\xi}^{(\zeta)}|\xi\rangle, \quad |\xi\rangle \equiv |\tau_{s};\xi;\tau\alpha LM\rangle \quad C_{\xi}^{(\zeta)} = \frac{1}{F^{(\zeta)}(\xi)}, \\ F^{(\zeta)}(\xi) &= E_{\tau,L}^{(\zeta)} - g_{2} - \frac{\lambda}{2N}\xi(2\tau+2\xi+3) \\ &- \frac{\lambda}{4N}(N-\tau-2\xi)(N-\tau-2\xi-1) - \Delta(\tau+2\xi), \end{split}$$

ζ,τ	E(5)	Е	XT	(CQ	IBM fit [15]
		N = 60	N = 1000	N = 60	N = 1000	
1,0	0.00	0.00	0.00	0.00	0.00	0.00
1,1	1.00	1.00	1.00	1.00	1.00	1.00
1,2	2.20	2.14	2.18	2.12	2.10	2.21
2,0	3.03	3.59	3.50	2.60	2.45	3.05
1,3	3.59	3.45	3.55	3.33	3.29	3.61
2,1	4.80	5.16	5.23	3.91	3.71	4.51
1,4	5.17	4.93	5.13	4.64	4.56	5.16
2,2	6.78	6.95	7.19	5.30	5.03	6.11
3,0	7.58	8.02	8.31	5.68	5.30	6.68
1,5	6.93	6.59	6.91	6.02	5.89	6.85
1,6	8.88	8.44	8.91	7.46	7.28	_
2,3	8.97	8.95	9.37	6.76	6.41	8.67
3,1	10.11	10.39	10.90	7.24	6.75	8.51
2,4	11.36	11.15	11.75	8.27	7.85	_
3,2	12.85	12.96	13.71	8.85	8.25	10.44
4,0	13.64	13.98	14.79	9.16	8.48	_
2,5	13.95	13.54	14.36	9.85	9.34	_
3,3	15.81	15.74	16.73	10.50	9.79	_
2,6	16.73	16.13	17.18	11.48	10.88	_
4,1	16.93	17.13	18.23	10.92	10.09	_
	χ^2	0.09	0.17	0.75	0.86	0.40

			•				•	•		
	E(5)	¹⁰² Pd	EXT	SET	¹³⁴ Ba	EXT	CQ5	¹²⁸ Xe	EXT	CQ_6
01+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2_1^+ 2_2^+ 4_1^+	2.20	2.76	2.21	2.58	1.93	2.31	2.15	2.29	2.14	2.15
4 <mark>1</mark>	2.20	2.29	2.21	2.58	2.32	2.31	2.15	2.44	2.14	2.15
0_{ζ}^{+}	3.03	2.98	2.69	2.92	3.57	2.92	3.18	3.74	3.38	3.10
0_{τ}^{+}	3.59	2.87	3.23	3.70	2.91	3.31	3.43	4.44	3.52	3.42
3+	3.59	3.79	3.23	3.70	2.72	3.31	3.43	3.38	3.52	3.42
4^{+}_{2}	3.59	3.84	3.23	3.70	3.26	3.31	3.43	3.79	3.52	3.42
0^+_{ζ} 0^+_{τ} 3^+_1 4^+_2 6^+_1	3.59	3.72	3.23	3.70	3.66	3.31	3.43	4.11	3.52	3.42
2 ⁺ ₃	4.80	3.49	3.72	4.14	3.36	3.92	4.70	4.73	5.11	4.59
$B(E2:4_1^+ \to 2_1^+)$	167.4	154.5	143.9	187.8	154.8	141.9	140.8	146.7	151.3	147.2
$B(E2:6^+_1 \rightarrow 4^+_1)$	216.9	_	137.5	257.6	_	129.6	143.8	181.6	172.5	161.7
$B(E2:2^+_2 \rightarrow 2^+_1)$	167.4	45.0	143.9	187.8	217.2	141.9	140.8	119.4	151.3	147.2
$B(E2:2^+_2 \rightarrow 0^+_1)$	0.0	6.0	0.0	0.0	1.25	0.0	0.0	1.6	0.0	0.0
$B(E2:4^+_2 \rightarrow 2^+_1)$	0.0	9.0	0.0	0.0	_	0.0	0.0	_	0.0	0.0
$B(E2:4^+_2 \rightarrow 2^+_2)$	113.6	136.4	72.0	136.4	_	67.9	75.3	_	90.4	84.7
$B(E2:4_2^+ \rightarrow 4_1^+)$	103.3	<24.0	65.5	121.2	_	61.7	68.5	_	82.1	77.0
$B(E2:3_1^+ \rightarrow 2_2^+)$	154.9	_	98.2	184.8	12.8	92.5	102.7	_	123.2	115.5
$B(E2:3^+_1 \rightarrow 4^+_1)$	62.0	_	39.3	72.7	_	37.0	41.1	_	49.3	46.2
$B(E2:0^+_{\tau} \rightarrow 2^+_2)$	216.9	291.0	137.5	257.6	_	129.6	143.8	_	172.5	161.7
$B(E2:0^+_{\tau} \rightarrow 2^+_1)$	0.0	< 0.001	0.0	0.0	3.0	0.0	0.0	_	0.0	0.0
$B(E2:2_3^+ \rightarrow 0_{\xi}^+)$	72.2	_	47.2	109.1	_	43.7	56.6	_	66.8	64.6
$B(E2:0^{\stackrel{+}{\varsigma}}_{\zeta} \to 2^{\stackrel{+}{\gamma}}_1)$	86.8	39.4	68.5	163.6	41.7	57.3	64.5	_	93.4	72.3

Comparison of low-lying level energies and relevant B(E2) values of ^{102}Pd , ^{134}Ba , and ^{128}Xe

For ¹⁰⁴Ru, ¹⁰⁸Pd, and ^{114,116}Cd.

	E(5)	¹⁰⁴ Ru	EXT	SET	¹⁰⁸ Pd	EXT	SET	¹¹⁶ Cd	EXT	SET	CQ_8	¹¹⁴ Cd	EXT	SET	CQ ₉
0+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2^{+}_{2}	2.20	2.49	2.03	2.22	2.14	2.03	2.20	2.36	2.07	2.66	2.14	2.17	2.00	2.00	2.14
4_{1}^{+}	2.20	2.48	2.03	2.22	2.42	2.03	2.20	2.37	2.07	2.66	2.14	2.30	2.00	2.00	2.14
0^{+}_{ζ}	3.03	2.76	3.04	2.34	2.43	2.41	2.30	2.69	2.43	3.09	3.00	2.03	2.00	2.00	2.96
0_{τ}^{+}	3.59	3.73	3.25	3.27	3.03	3.21	3.23	2.50	3.22	3.80	3.41	2.33	3.00	3.00	3.40
2_{1}^{+} 2_{2}^{+} 4_{1}^{+} 0_{ζ}^{+} 0_{ζ}^{+} 3_{1}^{+} 4_{2}^{+} 6_{1}^{+} 2_{3}^{+}	3.59	3.47	3.25	3.27	3.08	3.13	3.23	3.73	3.22	3.80	3.41	3.34	3.00	3.00	3.40
4_{2}^{+}	3.59	4.20	3.25	3.27	3.75	3.13	3.23	3.98	3.22	3.80	3.41	3.10	3.00	3.00	3.40
6 ⁺ ₁	3.59	4.35	3.25	3.27	4.08	3.13	3.23	3.95	3.22	3.80	3.41	3.56	3.00	3.00	3.40
24	4.80	4.23	4.41	3.66	3.32	3.60	4.36	3.20	3.72	4.41	4.45	2.44	3.00	-	4.40
$B(E2:4_1^+ \to 2_1^+)$	167.4	134.5	154.3	195.2	147.5	163.5	_	163.9	175.0	188.1	154.7	199.4	177.8	_	157.2
$B(E2:6^+_1 \to 4^+_1)$	216.9	190.4	184.8	276.8	216.2	202.1	_	327.8	215.0	250.7	181.9	382.6	233.3	_	188.7
$B(E2:2_2^+ \to 2_1^+)$	167.4	67.3	154.3	195.2	143.4	163.5	_	74.5	175.0	188.1	154.7	70.7	177.8	_	157.2
$B(E2:2^+_2 \to 0^+_1)$	0.0	4.8	0.0	0.0	0.01	0.00	0.0	_	0.0	0.0	0.0	_	0.0	0.0	0.0
$B(E2:4_2^+ \to 2_1^+)$	0.0	_	0.0	0.0	_	0.0	0.0	_	0.0	0.0	0.0	1.6	0.0	0.0	0.0
$B(E2:4_2^+ \to 2_2^+)$	113.6	82.7	96.8	145.2	111.1	105.7	_	_	117.9	131.3	95.3	102.9	122.2	_	98.8
$B(E2:4^+_2 \to 4^+_1)$	103.3	45.2	88.0	132.1	60.6	96.2	_	_	107.1	119.4	86.6	54.7	111.1	_	89.9
$B(E2:3^+_1 \to 2^+_2)$	154.9	126.8	132.0	198.2	_	144.4	_	181.8	160.7	179.1	129.9	_	166.7	_	134.8
$B(E2:3^+_1 \to 4^+_1)$	62.0	27.4	52.8	79.2	_	57.7	_	53.6	62.1	71.6	52.0	_	66.7	_	53.9
$B(E2:0^+_\tau \to 2^+_2)$	216.9	_	184.8	276.8	<36.4	202.1	_	_	225.0	250.7	181.9	408.4	233.3	_	188.7
$B(E2:0^+_{\tau}\to 2^+_1)$	0.0	_	0.0	0.0	< 0.02	0.0	0.0	1.64	0.0	0.0	0.0	0.01	0.0	0.0	0.0
$B(E2:2_3^+ \to 0_{\zeta}^+)$	72.2	60.1	64.3	122.0	119.2	79.5	_	256.3	105.0	104.5	73.4	209.0	108.9	_	76.1
$B(E2:0^+_{\zeta} \to 2^+_1)$	86.8	42.3	83.7	182.7	105.1	121.8	-	89.4	175.0	158.2	81.1	88.1	177.8	_	84.4

Notes on solutions to the standard pairing model

• Hamiltonian for pairing interaction in *non-degenerate* shells:

$$\hat{H} = \sum_{j} \varepsilon_{j} \hat{n}_{j} - G \sum_{jj'} \hat{S}_{+}^{j} \hat{S}_{-}^{j'}$$

 Is the pairing model with non-degenerate orbits integrable?
 R.W. Richardson, Phys. Lett. 5 (1963) 82

M. Gaudin, J. Phys. (Paris) **37** (1976) 1087.

$$\left[\hat{S}_{+}^{i},\hat{S}_{-}^{j}\right] = 2\delta_{ij}\hat{S}_{z}^{j}, \left[\hat{S}_{z}^{i},\hat{S}_{\pm}^{j}\right] = \pm\delta_{ij}\hat{S}_{+}^{j}$$

Pairing with non-degenerate orbits

• A hamiltonian for pairing in *non-degenerate* shells is integrable! Solution:

$$\prod_{\alpha=1}^{k} \left(\sum_{j=1}^{n} \frac{1}{x_{\alpha} - 2\varepsilon_{j}} S_{+}^{j} \right) | 0 \rangle, \quad \rho_{j} = -(j+1/2)/2,$$

$$2G \sum_{j} \frac{\rho_{j}}{x_{\alpha} - 2\varepsilon_{j}} + 2G \sum_{\beta(\neq\alpha)} \frac{1}{x_{\alpha} - x_{\beta}} - 1 = 0, \quad \alpha = 1, 2, \dots, k.$$

• Let y(x) be a polynomial of degree k satisfying the following second order Fuchsian equation:

A(x)y''(x)+B(x)y'(x)-V(x)y(x)=0

where
$$A(x) = \prod_{i=1}^{n} (x - a_i)$$

 $B(x) / A(x) = \sum_{i=1}^{n} \frac{\rho_i}{(x - a_i)}$

T J Stieltjes

V(x) is a polynomial of degree n-2 need to be determined

G. Szego, Amer. Math. Soc. Colloq. Publ. vol. 23, AMS,1975 T J Stieltjes, C. R. Acad Sci Paris 100 (1885) 439;620 E B Van Vleck, Bull. Amer. Math. Soc. 4 (1898) 426. Let y(x) be a polynomial of degree k with k zeros x_i:

$$y(x) = \prod_{i=1}^{n} (x - x_i)$$

One can easily check that y(x) satisfy

 The corresponding Fuchsian equation is A(x)y''(x)+B(x) y'(x)-V(x)y(x)=0

$$A(x) = \prod_{j=1}^{n} (x - 2\varepsilon_j), B(x) / A(x) = \sum_{j=1}^{n} \frac{2\rho_j}{x - 2\varepsilon_j} - 1/G$$

The number of solutions should be equal exactly to

$$\eta(n,k) = \sum_{p_1=0}^{-2\rho_1} \sum_{p_2=0}^{-2\rho_2} \cdots \sum_{p_n=0}^{-2\rho_n} \delta_{q,k}, \quad q = \sum_{i=1}^n p_i.$$

When $\rho_i = -1/2$ corresponding to the Nilsson model, we have

$$\eta(n,k) = n!/((n-k)!k!).$$

The Heine-Stieltjes correspondence

Heine-Stieltjes and Van Vleck Polys A(x)y''(x)+B(x)y'(x)-V(x)y(x)=0 $A(x) = \prod_{j=1}^{n} (x-2\varepsilon_j), B(x)/A(x) = \sum_{j=1}^{n} \frac{2\rho_j}{x-2\varepsilon_j} - 1/G$ $y(x) = \sum_{j=0}^{k} a_j x^j, \quad V(x) = \sum_{j=0}^{n-1} b_j x^j$

One will get two matrix equations:

$$Fv=b_0v, \qquad Pv=0, \text{ where } v=\{a_0, a_1, \dots, a_k\}.$$
solves $\{a_0, a_1, \dots, a_k\}$
and $b_0.$

$$Pv=0, \text{ where } v=\{a_0, a_1, \dots, a_k\}.$$
provides unique solution for
 $\{b_1, b_2, \dots, b_{n-1}\}$ as a function of
 $\{a_0, a_1, \dots, a_k\}.$
s different from that shown in A. Faribault et al, PRB 83,
235124 (2011) using Ricatti type equations.

Advantage of the procedure:

No divergence occurs in variations of both $\{a_0, a_1, ..., a_k\}$ and $\{b_0, b_1, ..., b_{n-1}\}$ in solving the two equations

$$Fv = b_0 v \text{ and } Pv = 0, \text{ where } v = \{a_0, a_1, ..., a_k\},\$$

so any recursive and iteration method can be used.

X. Guan, K.D. Launey, M. Xie, L. Bao, F. Pan, and J. P. Draayer, **Phys. Rev. C 86 (2012) 024313**; **Comp. Phys. Commun. 185 (2014) 2714**.

However, numerical work in finding roots of

the Gaudin-Richardson equations increases with the increasing of the number

of orbits and the number of valence nucleon pairs, which limits the application of the theory

VOLUME 92, NUMBER 11

PHYSICAL REVIEW LETTERS

week ending 19 MARCH 2004

Algebraic Solutions of an Extended Pairing Model for Well Deformed Nuclei

Feng Pan,^{1,2} V.G. Gueorguiev,^{2,*} and J.P. Draayer²

¹Department of Physics, Liaoning Normal University, Dalian, 116029, People's Republic of China ²Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA (Received 10 October 2003; published 18 March 2004)

A Nilsson mean-field plus extended pairing interaction Hamiltonian with many-pair interaction terms is proposed. Eigenvalues of the extended pairing model are easy to obtain. Our investigation shows that one- and two-body interactions continue to dominate the dynamics for relatively small values of the pairing strength. As the strength of the pairing interaction grows, however, the three- and higher many-body interaction terms grow in importance. A numerical study of even-odd mass differences in the ^{154–171}Yb isotopes shows that the extended pairing model is applicable to well deformed nuclei.

$$\hat{H} = \sum_{j=1}^{p} \epsilon_{j} n_{j} - G \sum_{i,j=1}^{p} a_{i}^{+} a_{j} - G \left(\sum_{\mu=2}^{\infty} \frac{1}{(\mu!)^{2}} \sum_{i_{1} \neq i_{2} \neq \cdots \neq i_{2\mu}} a_{i_{1}}^{+} a_{i_{2}}^{+} \cdots a_{i_{\mu}}^{+} a_{i_{\mu+1}} a_{i_{\mu+2}} \cdots a_{i_{2\mu}} \right)$$

3. The extended monopole pairing

$$C_{n_{1},\cdots,n_{p}}^{(\zeta)} = \frac{1}{F(n_{1},\cdots,n_{p})}, \qquad -G\sum_{n_{1}=0}^{2Q_{j_{1}}} \cdots \sum_{n_{p}=0}^{2Q_{j_{p}}} \frac{\delta_{q,N}}{F(n_{1},\cdots,n_{p})} = 1.$$

$$|Q_{j}, -Q_{j} + n; \nu_{j}\rho_{j}\rangle = \tilde{S}_{j}^{\dagger n} |\nu_{j}\rho_{j}\rangle$$

$$N,\zeta\rangle = \sum_{n_{1},\cdots,n_{p}} C_{n_{1},\cdots,n_{p}}^{(\zeta)} |n_{1},\cdots,n_{p}\rangle = \sum_{n_{1}=0}^{2Q_{j_{1}}} \cdots \sum_{n_{p}=0}^{2Q_{j_{p}}} \delta_{\sum_{i=1}^{p} n_{i},N} C_{n_{1},\cdots,n_{p}}^{(\zeta)} |n_{1},\cdots,n_{p}\rangle,$$

 $\{|n_1,\cdots,n_p\rangle = \tilde{S}_{j_1}^{\dagger n_1}\cdots\tilde{S}_{j_p}^{\dagger n_p}|\nu_{j_1}\rho_{j_1},\cdots,\nu_{j_p}\rho_{j_p}\rangle\},$ which are mutually orthonormal,

$$\dim(V_N) = \sum_{n_1=0}^{2Q_{j_1}} \cdots \sum_{n_p=0}^{2Q_{j_p}} \delta_{\sum_{i=1}^p n_i, N}.$$
$$F(n_1, \cdots, n_p) = E^{(\zeta)} - G - \sum_{j=1}^p \epsilon_{j_i} (2n_{j_i} + \nu_{j_i}) + \sum_{i=1}^p G_{j_i} n_i (2Q_{j_i} - n_i + 1),$$

TABLE I: The G values used in (18) with $G_j = G_s \forall j$ to produce the same ground state energy of the standard pairing for the seniority zero cases and the corresponding overlaps $|\langle Q^0, N | N, \zeta = 1 \rangle|$ for given total number of pairs N.

N	1	2	3	4	5	6	7	8	9	10	11	12	
G/G_s	2.266	0.745	0.236	0.112	0.055	0.0304	0.0187	0.0126	0.0093	0.00743	0.00641	0.00596	
overlap	0.99	0.93	0.93	0.88	0.86	0.84	0.82	0.81	0.80	0.79	0.79	0.78	
N	13	14	15	16	17	18	19	20	21	22	23	24	25
G/G_s	0.00596	0.0064	0.00743	0.0093	0.0126	0.01868	0.0304	0.0550	0.112	0.262	0.712	2.266	1.000
overlap	0.78	0.79	0.79	0.80	0.81	0.82	0.84	0.86	0.88	0.90	0.94	0.99	1.00

with 11 *j*-orbits: $1s_{1/2}$, $1p_{3/2}$, $1p_{1/2}$, $1d_{5/2}$, $2s_{1/2}$, $1d_{3/2}$, $1f_{7/2}$, $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$, and $1g_{9/2}$.

TABLE II: The overlap $|\langle Q^0, N | N, \zeta = 1 \rangle|$ for given total number of pairs N with $G_j = G_s \forall j$ and $G = G_s$.

N	1	2	3	4	5	6	7	8	9	10	11	12	
Overlap	0.98	0.94	0.92	0.89	0.87	0.85	0.83	0.82	0.81	0.80	0.80	0.80	
N	13	14	15	16	17	18	19	20	21	22	23	24	25
Overlap	0.80	0.80	0.80	0.81	0.82	0.83	0.85	0.87	0.89	0.91	0.94	0.97	1.0

APPLICATION TO THE GROUND STATES OF 12-28 O with 11 *j*-orbits: $1s_{1/2}$, $1p_{3/2}$, $1p_{1/2}$, $1d_{5/2}$, $2s_{1/2}$, $1d_{3/2}$, $1f_{7/2}$, $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$, and $1g_{9/2}$.

TABLE III: The neutron single-particle energies for ¹⁶O generated from the spherical shell model.

Shell	Neutron energy (MeV)
$1s_{1/2}$	-30.316
$1p_{3/2}$	-15.834
$1p_{1/2}$	-9.910
$1d_{5/2}$	-0.860
$2s_{1/2}$	2.590
$1d_{3/2}$	7.781
$1f_{7/2}$	13.500
$2p_{3/2}$	20.160
$1f_{5/2}$	23.860
$1p_{1/2}$	24.608
$1g_{9/2}$	28.207

 $E_{\rm B} = E_{\rm core} + E_k^{(1)}$, for the binding energy.

 $G_j = (18/A)^{1/3} (2.1246 + 2.8197/3 + 2.1845/2)/3 = G_s \forall j \text{ (in MeV)}$

which is the average value of the J=0 two-body matrix Elements of the universal ds-shell Hamiltonian of Wildenthal.

 $G_s = (18/12)^{1/3}(2.1246 + 2.8197/3 + 2.1845/2)/3 = 1.5861$ (in MeV) from which we get G = 1.18MeV for ¹²O.

From which we get $E_{\text{core}} = 47.375 \text{MeV}.$

Since the binding energies are produced by adjusting the parameter G, the even-odd mass difference $P(A) = E_B(A) - E_B(A+1) - E_B(A-1)$ is simply given by the difference of the ground state energies obtained from (15) with $P(A) = E_A^{(1)} - E_{A+1}^{(1)} - E_{A-1}^{(1)}$ according to (19), which produces the experimental value of the even-odd mass differences for $^{12-28}$ O exactly.

TABLE IV: The number of valence neutron pairs N, the binding energy (BE) in MeV, the pairing interaction strength G (in MeV) used in the fitting for the binding energies of $^{12-28}$ O, and the corresponding dimension of the subspace V_N , where the experimental binding energies of $^{12-28}$ O are taken from [24].

Nucleus	$^{12}\mathrm{O}$	$^{13}\mathrm{O}$	$^{14}\mathrm{O}$	$^{15}\mathrm{O}$	$^{16}\mathrm{O}$	$^{17}\mathrm{O}$	$^{18}\mathrm{O}$	$^{19}\mathrm{O}$	^{20}O
N	2	2	3	3	4	4	5	5	6
BE	58.68	75.553	98.728	111.945	127.616	131.75	139.806	143.754	151.36
G	1.18	1.46113	0.61307	0.86924	0.276678	0.28782	0.129469	0.1352595	0.0693543
$\dim(V_N)$	62	61	239	187	708	698	1716	1665	3537
Nucleus	$^{21}\mathrm{O}$	^{22}O	^{23}O	^{24}O	$^{25}\mathrm{O}$	^{26}O	$^{27}\mathrm{O}$	^{28}O	
N	6	7	7	8	8	9	9	10	
BE	155.169	162.008	164.772	168.96	168.175	168.87	167.211	167.664	
G	0.0734275	0.0416356	0.0456587	0.0273394	0.0340675	0.01921218	0.0246857	0.0146306	
$\dim(V_N)$	3360	6361	5891	10160	8161	14594	11291	19019	

The pairing energy contribution to the binding as a Function of the mass number A.

Probability distributions of the O-12 wavefunctions as a function of the number of the HO excitation quanta (shown along the horizontal axis, $n\hbar\omega = 0, 2, \ldots, 14\hbar\omega$)

the present extended pairing model (blue)

the *ab initio* SA-NCSM (red) with the bare JISP16 nucleon-nucleon interaction in the 14 HO shell model space and for $\hbar \omega = 15$ MeV

SU(3) content of the $0\hbar\omega$ part of the O-12 ground-state as compared to the corresponding *ab initio* 14-shell SA-NCSM results

Brief Summary

- 1) We established an E2 algebra to construct exactly solvable models for both Boson and Fermion systems.
- 2) In application of the model for the IBM, an extended U(5)-O(6) Hamiltonian is constructed, which produces spectrum and E2 transition rates more close to those obtained from the collective E(5) model.
- 3) An exactly solvable spherical mean-field plus the extended monopole pairing up to infinite order is thus established, which includes the extended pairing model for deformed mean-field theory as a special case.
- 4) Our analysis shows that the model results with 11 j-orbits for ¹²⁻²⁸O are consistent with those of the ab initio SA-NCSM.

Contributors to this work also include

Kristina D. Launey, Jerry P. Draayer (LSU)

Xin Guan, Yu Zhang, Lianrong Dai (LNNU) Supported by NSFC (11405080, 11175078, 11375080), NSF (0904874); DOE (DE-SC0005248, FG02-13ER42025), LSU-LNNU joint program(9961). Tank you!