Exact solutions of the extended

pairing interactions in Bose and Fermi Many-Body systems

Feng Pan

 Liaoning NormalSDANCA-15 , Sofia, Bulgaria

Oct. 8-10, 2015

Content

$1 \mathrm{E}_{2}$ algebraic structure
2 Application to Interacting Boson models
3 Spherical mean-field plus an extended monopole pairing model
4 Summary

1. E_{2} algebraic structure

Let b, b^{+}be annihilation and creation operator of bosons satisfying $\left[b, b^{+}\right]=1,\left[b^{+} b, b\right]=-b$, $\left[b^{+} b, b^{+}\right]=b^{+}$. One can introduce functionals

$$
\begin{aligned}
& \tilde{\mathrm{b}}=f\left(b^{+} b\right) b, \quad \tilde{\mathrm{~b}}^{+}=b^{+} f\left(b^{+} b\right), \\
& f\left(b^{+} b\right)=1 / \sqrt{b^{+} b+1}
\end{aligned}
$$

Then, the new algebra $\left\{\widetilde{\mathrm{b}}, \tilde{\mathrm{b}}^{+}, n=b^{+} b\right\}$ satisfies

$$
\begin{gathered}
{[\mathrm{n}, \tilde{\mathrm{~b}}]=-\widetilde{\mathrm{b}},\left[\mathrm{n}, \tilde{\mathrm{~b}}^{+}\right]=b^{+}} \\
{\left[\widetilde{\mathrm{b}}, \widetilde{\mathrm{~b}}^{+}\right]=\delta_{n 0}}
\end{gathered}
$$

Similarly, one can also do the same thing for fermion pairing algebras:
Let $N_{j}=\sum_{m} a_{j m}^{\dagger} a_{j m}$ be the number operator of fermions in a single-j shell and

$$
S_{j}^{\dagger}=\sum_{m>0}(-1)^{j-m} a_{j m}^{\dagger} a_{j-m}^{\dagger} \quad \text { be the monopole pair }
$$

creation operator in the j-orbit. One can fermionic E_{2} algebraic with

$$
\tilde{S}_{j}^{\dagger}=\frac{1}{\sqrt{\left(Q_{j}-\hat{S}_{j}^{0}+1\right)\left(Q_{j}+\hat{S}_{j}^{0}\right)}} S_{j}^{\dagger}
$$

where $Q_{j}=\frac{1}{2}\left(\Omega_{j}-\nu_{j}\right)$ and $\hat{S}_{j}^{0}=\frac{1}{2}\left(N_{j}-\Omega_{j}\right)$ are quasi-spin and its third component in the j -orbit.

Let $|0\rangle$ be the vacuum state satisfying $a_{j m}|0\rangle=0^{-} \forall j$,
For the seniority $\nu_{i} \neq 0$ case, the lowest weight state for the quasi-spin Q_{j} is denoted as $\left|\nu_{j} \rho_{j}\right\rangle$ satisfying

$$
\begin{aligned}
S_{j}\left|\nu_{j} \rho_{j}\right\rangle= & 0 \quad\left|Q_{j},-Q_{j} ; \nu_{j} \rho_{j}\right\rangle \equiv\left|\nu_{j} \rho_{j}\right\rangle, \\
& \left|Q_{j},-Q_{j}+n ; \nu_{j} \rho_{j}\right\rangle=\tilde{S}_{j}^{\dagger n}\left|\nu_{j} \rho_{j}\right\rangle
\end{aligned}
$$

with $n=0,1, \cdots, 2 Q_{j}$, which satisfies

$$
\binom{S_{j}^{\dagger} S_{j}}{S_{j}^{0}}\left|Q_{j},-Q_{j}+n ; \nu_{j} \rho_{j}\right\rangle=\binom{n\left(Q_{j}-n+1\right)}{-Q_{j}+n}\left|Q_{j},-Q_{j}+n ; \nu_{j} \rho_{j}\right\rangle .
$$

A set of operators $\left\{\tilde{S}_{j_{i}}, \tilde{S}_{j_{i}}^{\dagger}, N_{j_{i}}\right\}(i=1,2, \cdots)$ satisfy the commutation relations

$$
\left[N_{j^{\prime}} / 2, \tilde{S}_{j}\right]=-\delta_{j j^{\prime}} \tilde{S}_{j},\left[N_{j^{\prime}} / 2, \tilde{S}_{j}^{\dagger}\right]=\delta_{j j^{\prime}} \tilde{S}_{j}^{\dagger}, \quad\left[\tilde{S}_{j^{\prime}}, \tilde{S}_{j}^{\dagger}\right]=\delta_{j j^{\prime}} \delta_{N_{j} 0}
$$

2. Applications to Boson models

 (1) The extended Bose-Hubbad model Similar to the original BH model, we consider an extended BH model with number-dependent multi-site hoping terms[Int J Theor Phys (2015) 54:2204]$\hat{H}=-t_{0} \sum_{k=1}^{\infty} \sum_{j_{1} \leq \cdots \leq j_{k}} \tilde{b}_{j_{j}}^{j_{j}} \cdots \tilde{b}_{j_{k}} \sum_{j_{i} \leq \cdots \leq j_{k}^{\prime}} \tilde{b}_{j_{j}} \cdots \tilde{b}_{j_{k}}+\sum_{j} V\left(\hat{n}_{j}\right)+\sum_{j} \epsilon_{j} \hat{n}_{j}$,
two groups of site-indices $\left\{j_{1}, \cdots, j_{k}\right\}$ and $\left\{j_{1}^{\prime}, \cdots, j_{k}^{\prime}\right\}$ with the restriction that no any one of $\left\{j_{1}, \cdots, j_{k}\right\}$ equals to any one of $\left\{j_{1}^{\prime}, \cdots, j_{k}^{\prime}\right\}$,
(a) The superfluid phase with $V\left(\hat{n}_{j}\right)=0$ and $\epsilon_{j}=0 \forall j$. The ground state in this case is non-degenerate and mostly delocalized with

$$
|N\rangle_{\mathrm{g}}=\mathcal{N} \sum_{n_{1}, \cdots, n_{M}}\left|n_{1}, \cdots, n_{M}\right\rangle \quad \mathcal{N}^{-2}=D(N, M)
$$

The corresponding ground state energy is given by

$$
E_{\mathrm{g}}^{\mathrm{SF}}=-t_{0}(D(N, M)-1)
$$

While other excited states are all degenerate with excitation energy being zero like the BCS spectrum.

The ground state probability to detect n particles on a given lattice site with $M=10^{5}$ sites

$$
P_{n}=\sum_{n_{i \neq 1}}\left|\left\langle n_{1}=n,\left\{n_{i \neq 1}\right\} \mid N\right\rangle_{\mathrm{g}}\right|^{2}
$$

$$
\rho=N / M
$$

(b) General solutions
exactly solvable when $\epsilon_{j}(j=1, \cdots, M)$ are not equal one another

$$
|N, \zeta\rangle=\sum_{n_{1}, \cdots, n_{M}} C_{n_{1}, \cdots, n_{M}}^{(\zeta)}\left|n_{1}, \cdots, n_{M}\right\rangle
$$

where the sum is restricted with $\sum_{j=1}^{M} n_{j}=N$,

$$
\begin{gathered}
C_{n_{1}, \cdots, n_{M}}^{(\zeta)}=\frac{1}{F\left(n_{1}, \cdots, n_{M}\right)}, \\
F\left(n_{1}, \cdots, n_{M}\right)=E^{(\zeta)}-t_{0}-\sum_{j} V\left(n_{j}\right)-\sum_{j=1}^{M} \epsilon_{j} n_{j} \\
-t_{0} \sum_{n_{1}, \cdots, n_{M}} \frac{1}{F\left(n_{1}, \cdots, n_{M}\right)}=1 .
\end{gathered}
$$

When $\epsilon_{j}(j=1, \cdots, M)$ are not equal one another, let $x_{\mu}=t_{0}+\sum_{j=1}^{M} V\left(n_{j}\right)+\sum_{j=1}^{M} \epsilon_{j} n_{j}$ with $x_{1}<x_{2}<x_{3}<\cdots<x_{D(N, M)}$,
zeros of the polynomial
$E^{(\zeta)}$, satisfy either the interlacing condition

$$
\begin{aligned}
& x_{1}<E^{(1)}<x_{2}<E^{(2)}<x_{3}<\cdots \text { or } \\
& -\infty<x_{1}<E^{(1)}<x_{2}<E^{(2)}<x_{3}<\cdots
\end{aligned}
$$

They are with in the open intervals $\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right), \cdots$, $\left(x_{D(N, M)-1}, x_{D(N, M)}\right)$ or within $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \cdots,\left(x_{D(N, M)},+\infty\right)$.

(c) Special cases [exact ground state]

Table 1 The degree of the polynomial given by (14) for the integer filling cases with $\epsilon_{j}=0 \forall j$ and $\rho=N / M=1$ and compared with the dimension of the Hilbert subspace in full matrix diagonalization for the Hamiltonian (1) for some specific $N=M$ cases

	Degree of the polynomial	$D(N, M)$
$N=M=6$	9	462
$N=M=10$	27	92378
$N=M=12$	39	1352078
$N=M=14$	54	20058300

(2) Application to the IBM

Using the $\mathrm{SU}_{d}(1,1)$ and $\mathrm{SU}_{s}(1,1)$ generators, we can build an extended IBM Hamiltonian (EXT) as

$$
\begin{aligned}
\hat{H}_{\mathrm{c}}= & \Delta \hat{n}_{d}+\frac{\lambda}{N}\left(S_{s}^{+} S_{s}^{-}+S_{d}^{+} S_{d}^{-}\right) \\
& -g_{2} \sum_{k=1}^{\infty}\left(\tilde{S}_{s}^{+k} \tilde{S}_{d}^{-k}+\tilde{S}_{d}^{+k} \tilde{S}_{s}^{-k}\right),
\end{aligned}
$$

$$
\begin{array}{ll}
\tilde{S}_{d}^{+}=S_{d}^{+} \frac{1}{\sqrt{\left(S_{d}+S_{d}^{0}\right)\left(S_{d}^{0}-S_{d}+1\right)}}, \quad \tilde{S}_{d}^{-}=\left(S_{d}^{+}\right)^{\dagger}, \\
\tilde{S}_{s}^{+}=S_{s}^{+} \frac{1}{\sqrt{\left(S_{s}+S_{s}^{0}\right)\left(S_{s}^{0}-S_{s}+1\right)}}, & \tilde{S}_{s}^{-}=\left(S_{s}^{+}\right)^{\dagger} .
\end{array}
$$

where $\Delta=\epsilon_{d}-\epsilon_{s}>0$ is the energy gap of s and d bosons, and $\lambda>0$ and $g_{2}>0$ are real parameters.[Phys. Rev. C91 (2015) 034305]
the \tilde{E}_{2} algebra.

$$
\left[\tilde{S}_{\sigma}^{+}, \tilde{S}_{\rho}^{-}\right]=-\delta_{\rho \sigma} \delta_{S_{\rho}} S_{\rho}^{0},\left[S_{\sigma}^{0}, \tilde{S}_{\rho}^{ \pm}\right]= \pm \delta_{\sigma \rho} S_{\rho}^{ \pm}
$$

$$
\begin{aligned}
|N, \zeta, \tau \alpha L\rangle= & \sum_{\xi=0}^{\frac{1}{2}\left(N-\tau-\tau_{s}\right)} C_{\xi}^{(\zeta)}|\xi\rangle, \quad|\xi\rangle \equiv\left|\tau_{s} ; \xi ; \tau \alpha L M\right\rangle \quad C_{\xi}^{(\zeta)}=\frac{1}{F^{(5)}(\xi)} \\
F^{(\zeta)}(\xi)= & E_{\tau, L}^{(\zeta)}-g_{2}-\frac{\lambda}{2 N} \xi(2 \tau+2 \xi+3) \\
& -\frac{\lambda}{4 N}(N-\tau-2 \xi)(N-\tau-2 \xi-1)-\Delta(\tau+2 \xi),
\end{aligned}
$$

ζ, τ	E(5)	EXT		CQ		$\begin{gathered} \text { IBM fit [15] } \\ \quad N=60 \end{gathered}$
		$N=60$	$N=1000$	$N=60$	$N=1000$	
1,0	0.00	0.00	0.00	0.00	0.00	0.00
1,1	1.00	1.00	1.00	1.00	1.00	1.00
1,2	2.20	2.14	2.18	2.12	2.10	2.21
2,0	3.03	3.59	3.50	2.60	2.45	3.05
1,3	3.59	3.45	3.55	3.33	3.29	3.61
2,1	4.80	5.16	5.23	3.91	3.71	4.51
1,4	5.17	4.93	5.13	4.64	4.56	5.16
2,2	6.78	6.95	7.19	5.30	5.03	6.11
3,0	7.58	8.02	8.31	5.68	5.30	6.68
1,5	6.93	6.59	6.91	6.02	5.89	6.85
1,6	8.88	8.44	8.91	7.46	7.28	-
2,3	8.97	8.95	9.37	6.76	6.41	8.67
3,1	10.11	10.39	10.90	7.24	6.75	8.51
2,4	11.36	11.15	11.75	8.27	7.85	-
3,2	12.85	12.96	13.71	8.85	8.25	10.44
4,0	13.64	13.98	14.79	9.16	8.48	-
2,5	13.95	13.54	14.36	9.85	9.34	-
3,3	15.81	15.74	16.73	10.50	9.79	-
2,6	16.73	16.13	17.18	11.48	10.88	-
4,1	16.93	17.13	18.23	10.92	10.09	-
	χ^{2}	0.09	0.17	0.75	0.86	0.40

Comparison of low-lying level energies and relevant $B(E 2)$ values of ${ }^{102} \mathrm{Pd},{ }^{134} \mathrm{Ba}$, and ${ }^{128} \mathrm{Xe}$

	$\mathrm{E}(5)$	${ }^{102} \mathrm{Pd}$	EXT	SET	${ }^{134} \mathrm{Ba}$	EXT	CQ_{5}	${ }^{128} \mathrm{Xe}$	EXT	CQ_{6}
0_{1}^{+}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2_{1}^{+}	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2_{2}^{+}	2.20	2.76	2.21	2.58	1.93	2.31	2.15	2.29	2.14	2.15
4_{1}^{+}	2.20	2.29	2.21	2.58	2.32	2.31	2.15	2.44	2.14	2.15
0_{t}^{+}	3.03	2.98	2.69	2.92	3.57	2.92	3.18	3.74	3.38	3.10
0_{+}^{+}	3.59	2.87	3.23	3.70	2.91	3.31	3.43	4.44	3.52	3.42
3_{1}^{+}	3.59	3.79	3.23	3.70	2.72	3.31	3.43	3.38	3.52	3.42
4_{2}^{+}	3.59	3.84	3.23	3.70	3.26	3.31	3.43	3.79	3.52	3.42
6_{1}^{+}	3.59	3.72	3.23	3.70	3.66	3.31	3.43	4.11	3.52	3.42
2_{3}^{+}	4.80	3.49	3.72	4.14	3.36	3.92	4.70	4.73	5.11	4.59
$B\left(E 2: 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$	167.4	154.5	143.9	187.8	154.8	141.9	140.8	146.7	151.3	147.2
$B\left(E 2: 6_{1}^{+} \rightarrow 4_{1}^{+}\right)$	216.9	-	137.5	257.6	-	129.6	143.8	181.6	172.5	161.7
$B\left(E 2: 2_{2}^{+} \rightarrow 2_{1}^{+}\right.$	167.4	45.0	143.9	187.8	217.2	141.9	140.8	119.4	151.3	147.2
$B\left(E 2: 2_{2}^{+} \rightarrow 0_{1}^{+}\right.$	0.0	6.0	0.0	0.0	1.25	0.0	0.0	1.6	0.0	0.0
$B\left(E 2: 4_{2}^{+} \rightarrow 2_{1}^{+}\right.$	0.0	9.0	0.0	0.0	-	0.0	0.0	-	0.0	0.0
$B\left(E 2: 4_{2}^{+} \rightarrow 2_{2}^{+}\right.$	113.6	136.4	72.0	136.4	-	67.9	75.3	-	90.4	84.7
$B\left(E 2: 4_{2}^{+} \rightarrow 4_{1}^{+}\right)$	103.3	<24.0	65.5	121.2	-	61.7	68.5	-	82.1	77.0
$B\left(E 2: 3_{1}^{+} \rightarrow 2_{2}^{+}\right)$	154.9	-	98.2	184.8	12.8	92.5	102.7	-	123.2	115.5
$B\left(E 2: 3_{1}^{+} \rightarrow 4_{1}^{+}\right)$	62.0	-	39.3	72.7	-	37.0	41.1	-	49.3	46.2
$B\left(E 2: 0_{\tau}^{+} \rightarrow 2_{2}^{+}\right)$	216.9	291.0	137.5	257.6	-	129.6	143.8	-	172.5	161.7
$B\left(E 2: 0_{\tau}^{+} \rightarrow 2_{1}^{+}\right)$	0.0	<0.001	0.0	0.0	3.0	0.0	0.0	-	0.0	0.0
$B\left(E 2: 2_{3}^{+} \rightarrow 0_{5}^{+}\right)$	72.2	-	47.2	109.1	-	43.7	56.6	-	66.8	64.6
$B\left(E 2: 0_{\xi}^{+} \rightarrow 2_{1}^{+}\right)$	86.8	39.4	68.5	163.6	41.7	57.3	64.5	-	93.4	72.3

For ${ }^{104} \mathrm{Ru},{ }^{108} \mathrm{Pd}$, and ${ }^{114,116} \mathrm{Cd}$.

	E(5)	${ }^{104} \mathrm{Ru}$	EXT	SET	${ }^{108} \mathrm{Pd}$	EXT	SET	${ }^{116} \mathrm{Cd}$	EXT	SET	CQ_{8}	${ }^{114} \mathrm{Cd}$	EXT	SET	CQ_{9}
0_{1}^{+}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$2+$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
$2{ }_{2}^{+}$	2.20	2.49	2.03	2.22	2.14	2.03	2.20	2.36	2.07	2.66	2.14	2.17	2.00	2.00	2.14
4_{1}^{+}	2.20	2.48	2.03	2.22	2.42	2.03	2.20	2.37	2.07	2.66	2.14	2.30	2.00	2.00	2.14
0_{5}^{+}	3.03	2.76	3.04	2.34	2.43	2.41	2.30	2.69	2.43	3.09	3.00	2.03	2.00	2.00	2.96
0_{τ}^{+}	3.59	3.73	3.25	3.27	3.03	3.21	3.23	2.50	3.22	3.80	3.41	2.33	3.00	3.00	3.40
$3{ }_{1}^{+}$	3.59	3.47	3.25	3.27	3.08	3.13	3.23	3.73	3.22	3.80	3.41	3.34	3.00	3.00	3.40
4_{2}^{+}	3.59	4.20	3.25	3.27	3.75	3.13	3.23	3.98	3.22	3.80	3.41	3.10	3.00	3.00	3.40
6_{1}^{+}	3.59	4.35	3.25	3.27	4.08	3.13	3.23	3.95	3.22	3.80	3.41	3.56	3.00	3.00	3.40
$2{ }_{3}^{+}$	4.80	4.23	4.41	3.66	3.32	3.60	4.36	3.20	3.72	4.41	4.45	2.44	3.00	-	4.40
$B\left(E 2: 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$	167.4	134.5	154.3	195.2	147.5	163.5	-	163.9	175.0	188.1	154.7	199.4	177.8	-	157.2
$B\left(E 2: 6_{1}^{+} \rightarrow 4_{1}^{+}\right)$	216.9	190.4	184.8	276.8	216.2	202.1	-	327.8	215.0	250.7	181.9	382.6	233.3	-	188.7
$B\left(E 2: 2_{2}^{+} \rightarrow 2_{1}^{+}\right)$	167.4	67.3	154.3	195.2	143.4	163.5	-	74.5	175.0	188.1	154.7	70.7	177.8	-	157.2
$B\left(E 2: 2_{2}^{+} \rightarrow 0_{1}^{+}\right)$	0.0	4.8	0.0	0.0	0.01	0.00	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0
$B\left(E 2: 4_{2}^{+} \rightarrow 2_{1}^{+}\right)$	0.0	-	0.0	0.0	-	0.0	0.0	-	0.0	0.0	0.0	1.6	0.0	0.0	0.0
$B\left(E 2: 4_{2}^{+} \rightarrow 2_{2}^{+}\right)$	113.6	82.7	96.8	145.2	111.1	105.7	-	-	117.9	131.3	95.3	102.9	122.2	-	98.8
$B\left(E 2: 4_{2}^{+} \rightarrow 4_{1}^{+}\right)$	103.3	45.2	88.0	132.1	60.6	96.2	-	-	107.1	119.4	86.6	54.7	111.1	-	89.9
$B\left(E 2: 3_{1}^{+} \rightarrow 2_{2}^{+}\right)$	154.9	126.8	132.0	198.2	-	144.4	-	181.8	160.7	179.1	129.9	-	166.7	-	134.8
$B\left(E 2: 3_{1}^{+} \rightarrow 4_{1}^{+}\right)$	62.0	27.4	52.8	79.2	-	57.7	-	53.6	62.1	71.6	52.0	-	66.7	-	53.9
$B\left(E 2: 0_{\tau}^{+} \rightarrow 2_{2}^{+}\right)$	216.9	-	184.8	276.8	<36.4	202.1	-	-	225.0	250.7	181.9	408.4	233.3	-	188.7
$B\left(E 2: 0_{\tau}^{+} \rightarrow 2_{1}^{+}\right)$	0.0	-	0.0	0.0	<0.02	0.0	0.0	1.64	0.0	0.0	0.0	0.01	0.0	0.0	0.0
$B\left(E 2: 2_{3}^{+} \rightarrow 0_{\xi}^{+}\right)$	72.2	60.1	64.3	122.0	119.2	79.5	-	256.3	105.0	104.5	73.4	209.0	108.9	-	76.1
$B\left(E 2: 0_{\xi}^{+} \rightarrow 2_{1}^{+}\right)$	86.8	42.3	83.7	182.7	105.1	121.8	-	89.4	175.0	158.2	81.1	88.1	177.8	-	84.4

Notes on solutions to the standard pairing model

- Hamiltonian for pairing interaction in non-degenerate shells:

$$
\hat{H}=\sum_{j} \varepsilon_{j} \hat{n}_{j}-G \sum_{j j^{\prime}} \hat{S}_{+}^{j} \hat{S}_{-}^{j^{\prime}}
$$

- Is the pairing model with non-degenerate orbits integrable?
R.W. Richardson, Phys. Lett. 5 (1963) 82 M. Gaudin, J. Phys. (Paris) 37 (1976) 1087.

$$
\left\lfloor\hat{S}_{+}^{i}, \hat{S}_{-}^{j}\right\rfloor=2 \delta_{i j} \hat{S}_{z}^{j},\left[\hat{S}_{z}^{i}, \hat{S}_{ \pm}^{j}\right]= \pm \delta_{i j} \hat{S}_{+}^{j}
$$

Pairing with non-degenerate orbits

- A hamiltonian for pairing in non-degenerate shells is integrable! Solution:

$$
\begin{aligned}
& \left.\prod_{\alpha=1}^{k}\left(\sum_{j=1}^{n} \frac{1}{x_{\alpha}-2 \varepsilon_{j}} S^{j}\right) 00\right\rangle, \rho_{j}=-(j+1 / 2) / 2, \\
& 2 G \sum_{j} \frac{\rho_{j}}{x_{\alpha}-2 \varepsilon_{j}}+2 G \sum_{\beta \nmid \neq \alpha)} \frac{1}{x_{\alpha}-x_{\beta}}-1=0, \alpha=1,2, \ldots, k .
\end{aligned}
$$

- Let $y(x)$ be a polynomial of degree k satisfying the following second order Fuchsian equation:

$$
A(x) y^{\prime \prime}(x)+B(x) y^{\prime}(x)-V(x) y(x)=0
$$

where

$$
A(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)
$$

$$
B(x) / A(x)=\sum_{i=1}^{n} \frac{\rho_{i}}{\left(x-a_{i}\right)}
$$

T J Stieltjes
$\mathrm{V}(\mathrm{x})$ is a polynomial of degree $\mathrm{n}-2$ need to be determined
G. Szego, Amer. Math. Soc. Colloq. Publ. vol. 23, AMS,1975 T J Stieltjes, C. R. Acad Sci Paris 100 (1885) 439;620 E B Van Vleck, Bull. Amer. Math. Soc. 4 (1898) 426.

- Let $\mathrm{y}(\mathrm{x})$ be a polynomial of degree k with k zeros x_{i} :

$$
y(x)=\prod_{i=1}^{k}\left(x-x_{i}\right)
$$

One can easily check that $y(x)$ satisfy

$$
\begin{gathered}
\frac{y^{\prime}\left(x_{i}\right)}{y^{\prime}\left(x_{i}\right)}=\sum_{j=1}^{k} \frac{2}{\left(x_{i}-x_{j}\right)} \\
\mathrm{A}(\mathrm{x}) \mathrm{y}^{\prime \prime}(\mathrm{x})+\mathrm{B}(\mathrm{x}) \mathrm{y}^{\prime}(\mathrm{x})-\mathrm{V}(\mathrm{x}) \mathrm{y}(\mathrm{x})=0
\end{gathered} \sum_{j=1}^{k} \frac{2}{\left(x_{i}-x_{j}\right)}+\sum_{\mu=1}^{n} \frac{\rho_{\mu}}{x_{i}-a_{\mu}}=0, i=1,2, \ldots, k . .
$$

- The corresponding Fuchsian equation is
$A(x) y^{\prime \prime}(x)+B(x) y^{\prime}(x)-V(x) y(x)=0$
$A(x)=\prod_{j=1}^{n}\left(x-2 \varepsilon_{j}\right), B(x) / A(x)=\sum_{j=1}^{n} \frac{2 \rho_{j}}{x-2 \varepsilon_{j}}-1 / G$
The number of solutions should be equal exactly to

$$
\eta(n, k)=\sum_{p_{1}=0}^{-2 \rho_{1}} \sum_{p_{2}=0}^{-2 \rho_{2}} \cdots \sum_{p_{n}=0}^{-2 \rho_{n}} \delta_{q, k}, \quad q=\sum_{i=1}^{n} p_{i}
$$

When $\rho_{\mathrm{i}}=-1 / 2$ corresponding to the Nilsson model, we have

$$
\eta(n, k)=n!/((n-k)!k!) .
$$

The Heine-Stieltjes correspondence

Heine-Stieltjes and Van Vleck Polys

$$
\begin{gathered}
\mathrm{A}(\mathrm{x}) \mathrm{y}^{\prime \prime}(\mathrm{x})+\mathrm{B}(\mathrm{x}) \mathrm{y}^{\prime}(\mathrm{x})-\mathrm{V}(\mathrm{x}) \mathrm{y}(\mathrm{x})=0 \\
A(x)=\prod_{j=1}^{n}\left(x-2 \varepsilon_{j}\right), B(x) / A(x)=\sum_{j=1}^{n} \frac{2 \rho_{j}}{x-2 \varepsilon_{j}}-1 / G \\
y(x)=\sum_{j=0}^{k} a_{j} x^{j}, V(x)=\sum_{j=0}^{n-1} b_{j} x^{j}
\end{gathered}
$$

One will get two matrix equations:
$\mathbf{F v}=\mathrm{b}_{0} \mathbf{v}, \quad \mathbf{P} \mathbf{v}=0$, where $\mathbf{V}=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right\}$.
solves $\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$
And b_{0}.
provides unique solution for
$\left\{b_{1}, b_{2}, \ldots, b_{n-1}\right\}$ as a function of $\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$.
is different from that shown in A. Faribault et al, PRB 83, 235124 (2011) using Ricatti type equations.

Advantage of the procedure:

No divergence occurs in variations of both $\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right\}$ and $\left\{\mathrm{b}_{0}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}-1}\right\}$ in solving the two equations

so any recursive and iteration method can be used.
X. Guan, K.D. Launey, M. Xie, L. Bao, F. Pan, and J. P. Draayer, Phys. Rev. C 86 (2012) 024313; Comp. Phys. Commun. 185 (2014) 2714.

However, numerical work in finding roots of

the Gaudin-Richardson equations increases with the increasing of the number of orbits and the number of valence nucleon pairs, which limits the application of the theory

Algebraic Solutions of an Extended Pairing Model for Well Deformed Nuclei

Feng Pan, ${ }^{1,2}$ V. G. Gueorguiev, ${ }^{2, *}$ and J. P. Draayer ${ }^{2}$
${ }^{1}$ Department of Physics, Liaoning Normal University, Dalian, 116029, People's Republic of China ${ }^{2}$ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA (Received 10 October 2003; published 18 March 2004)

A Nilsson mean-field plus extended pairing interaction Hamiltonian with many-pair interaction terms is proposed. Eigenvalues of the extended pairing model are easy to obtain. Our investigation shows that one- and two-body interactions continue to dominate the dynamics for relatively small values of the pairing strength. As the strength of the pairing interaction grows, however, the three- and higher many-body interaction terms grow in importance. A numerical study of even-odd mass differences in the ${ }^{154-171} \mathrm{Yb}$ isotopes shows that the extended pairing model is applicable to well deformed nuclei.

$$
\hat{H}=\sum_{j=1}^{p} \epsilon_{j} n_{j}-G \sum_{i, j=1}^{p} a_{i}^{+} a_{j}-G\left(\sum_{\mu=2}^{\infty} \frac{1}{(\mu!)^{2}} \sum_{i_{1} \neq i_{2} \neq \cdots \neq i_{2 \mu}} a_{i_{1}}^{+} a_{i_{2}}^{+} \cdots a_{i_{\mu}}^{+} a_{i_{\mu+1}} a_{i_{\mu+2}} \cdots a_{i_{2 \mu}}\right)
$$

$$
P_{\Im}=\left.\frac{\delta \Im}{\Im}\right|_{\mathrm{av}}=\frac{\Im(A)-\frac{1}{2}[\Im(A+1)+\Im(A-1)]}{\frac{1}{2}[\Im(A+1)+\Im(A-1)]}
$$

3. The extended monopole pairing

$$
\begin{gathered}
\hat{H}=\sum_{j} \epsilon_{j} N_{j}-\sum_{j} G_{j} S_{j}^{\dagger} S_{j}+\hat{H}_{P} \\
\hat{H}_{P}=-G \sum_{k=1}^{\infty} \sum_{j_{1} \leq \cdots \leq j_{k}} \tilde{S}_{j_{1}}^{\dagger} \cdots \tilde{S}_{j_{k}}^{\dagger} \sum_{j_{1}^{\prime} \leq \cdots \leq j_{k}^{\prime}} \tilde{S}_{j_{1}^{\prime}} \cdots \tilde{S}_{j_{k}^{\prime}}, \\
\tilde{S}_{j}^{\dagger}=\frac{1}{\sqrt{\left(Q_{j}-\hat{S}_{j}^{0}+1\right)\left(Q_{j}+\hat{S}_{j}^{0}\right)}} S_{j}^{\dagger} \\
Q_{j}=\frac{1}{2}\left(\Omega_{j}-\nu_{j}\right) \quad \hat{S}_{j}^{0}=\frac{1}{2}\left(N_{j}-\Omega_{j}\right)
\end{gathered}
$$

$\left\{\left|n_{1}, \cdots, n_{p}\right\rangle=\tilde{S}_{j_{1}}^{\dagger n_{1}} \cdots \tilde{S}_{j_{p}}^{\dagger n_{p}}\left|\nu_{j_{1}} \rho_{j_{1}}, \cdots, \nu_{j_{p}} \rho_{j_{p}}\right\rangle\right\}$, which are mutually orthonormal:

$$
\begin{gathered}
\operatorname{dim}\left(V_{N}\right)=\sum_{n_{1}=0}^{2 Q_{j_{1}}} \cdots \sum_{n_{p}=0}^{2 Q_{j_{p}}} \delta_{\sum_{i=1}^{p} n_{i}, N} \\
F\left(n_{1}, \cdots, n_{p}\right)=E^{(\zeta)}-G-\sum_{j=1}^{p} \epsilon_{j_{i}}\left(2 n_{j_{i}}+\nu_{j_{i}}\right)+\sum_{i=1}^{p} G_{j_{i}} n_{i}\left(2 Q_{j_{i}}-n_{i}+1\right),
\end{gathered}
$$

TABLE I: The G values used in (18) with $G_{j}=G_{s} \forall j$ to produce the same ground state energy of the standard pairing for the seniority zero cases and the corresponding overlaps $\left|\left\langle Q^{0}, N \mid N, \zeta=1\right\rangle\right|$ for given total number of pairs N.

N	1	2	3	4	5	6	7	8	9	10	11	12	
G / G_{s}	2.266	0.745	0.236	0.112	0.055	0.0304	0.0187	0.0126	0.0093	0.00743	0.00641	0.00596	
overlap	0.99	0.93	0.93	0.88	0.86	0.84	0.82	0.81	0.80	0.79	0.79	0.78	
N	13	14	15	16	17	18	19	20	21	22	23	24	25
G / G_{s}	0.00596	0.0064	0.00743	0.0093	0.0126	0.01868	0.0304	0.0550	0.112	0.262	0.712	2.266	1.000
overlap	0.78	0.79	0.79	0.80	0.81	0.82	0.84	0.86	0.88	0.90	0.94	0.99	1.00

with $11 j$-orbits: $1 s_{1 / 2}, 1 p_{3 / 2}, 1 p_{1 / 2}, 1 d_{5 / 2}, 2 s_{1 / 2}, 1 d_{3 / 2}, 1 f_{7 / 2}, 2 p_{3 / 2}, 1 f_{5 / 2}, 2 p_{1 / 2}$, and $1 g_{9 / 2}$.

TABLE II: The overlap $\left|\left\langle Q^{0}, N \mid N, \zeta=1\right\rangle\right|$ for given total number of pairs N with $G_{j}=G_{s} \forall j$ and $G=G_{s}$.

N	1	2	3	4	5	6	7	8	9	10	11	12	
Overlap	0.98	0.94	0.92	0.89	0.87	0.85	0.83	0.82	0.81	0.80	0.80	0.80	
N	13	14	15	16	17	18	19	20	21	22	23	24	25
Overlap	0.80	0.80	0.80	0.81	0.82	0.83	0.85	0.87	0.89	0.91	0.94	0.97	1.0

APPLICATION TO THE GROUND STATES OF ${ }^{12-28} \mathrm{O}$

 with $11 j$-orbits: $1 s_{1 / 2}, 1 p_{3 / 2}, 1 p_{1 / 2}, 1 d_{5 / 2}, 2 s_{1 / 2}, 1 d_{3 / 2}, 1 f_{7 / 2}, 2 p_{3 / 2}, 1 f_{5 / 2}, 2 p_{1 / 2}$, and $1 g_{9 / 2}$.TABLE III: The neutron single-particle energies for ${ }^{16} \mathrm{O}$ generated from the spherical shell model.

Shell	Neutron energy (MeV)
$1 s_{1 / 2}$	-30.316
$1 p_{3 / 2}$	-15.834
$1 p_{1 / 2}$	-9.910
$1 d_{5 / 2}$	-0.860
$2 s_{1 / 2}$	2.590
$1 d_{3 / 2}$	7.781
$1 f_{7 / 2}$	13.500
$2 p_{3 / 2}$	20.160
$1 f_{5 / 2}$	23.860
$1 p_{1 / 2}$	24.608
$1 g_{9 / 2}$	28.207

$E_{\mathrm{B}}=E_{\text {core }}+E_{k}^{(1)}$, for the binding energy.

$$
G_{j}=(18 / A)^{1 / 3}(2.1246+2.8197 / 3+2.1845 / 2) / 3=G_{s} \forall j(\text { in } \mathrm{MeV})
$$

which is the average value of the $\mathrm{J}=0$ two-body matrix Elements of the universal ds-shell Hamiltonian of Wildenthal.

$$
G_{s}=(18 / 12)^{1 / 3}(2.1246+2.8197 / 3+2.1845 / 2) / 3=1.5861(\text { in MeV })
$$

from which we get $G=1.18 \mathrm{MeV}$ for ${ }^{12} \mathrm{O}$.
From which we get $E_{\text {core }}=47.375 \mathrm{MeV}$.
Since the binding energies are produced by adjusting the parameter G, the even-odd mass difference $P(A)=E_{B}(A)-E_{B}(A+1)-E_{B}(A-1)$ is simply given by the difference of the ground state energies obtained from (15) with $P(A)=E_{A}^{(1)}-E_{A+1}^{(1)}-E_{A-1}^{(1)}$ according to (19), which produces the experimental value of the even-odd mass differences for ${ }^{12-28} \mathrm{O}$ exactly.

TABLE IV: The number of valence neutron pairs N, the binding energy (BE) in MeV , the pairing interaction strength G (in MeV) used in the fitting for the binding energies of ${ }^{12-28} \mathrm{O}$, and the corresponding dimension of the subspace V_{N}, where the experimental binding energies of ${ }^{12-28} \mathrm{O}$ are taken from [24].

Nucleus	${ }^{12} \mathrm{O}$	${ }^{13} \mathrm{O}$	${ }^{14} \mathrm{O}$	${ }^{15} \mathrm{O}$	${ }^{16} \mathrm{O}$	${ }^{17} \mathrm{O}$	${ }^{18} \mathrm{O}$	${ }^{19} \mathrm{O}$	${ }^{20} \mathrm{O}$
N	2	2	3	3	4	4	5	5	6
BE	58.68	75.553	98.728	111.945	127.616	131.75	139.806	143.754	151.36
G	1.18	1.46113	0.61307	0.86924	0.276678	0.28782	0.129469	0.1352595	0.0693543
$\operatorname{dim}\left(V_{N}\right)$	62	61	239	187	708	698	1716	1665	3537
Nucleus	${ }^{21} \mathrm{O}$	${ }^{22} \mathrm{O}$	${ }^{23} \mathrm{O}$	${ }^{24} \mathrm{O}$	${ }^{25} \mathrm{O}$	${ }^{26} \mathrm{O}$	${ }^{27} \mathrm{O}$	${ }^{28} \mathrm{O}$	
N	6	7	7	8	8	9	9	10	
BE	155.169	162.008	164.772	168.96	168.175	168.87	167.211	167.664	
G	0.0734275	0.0416356	0.0456587	0.0273394	0.0340675	0.01921218	0.0246857	0.0146306	
$\operatorname{dim}\left(V_{N}\right)$	3360	6361	5891	10160	8161	14594	11291	19019	

The pairing energy contribution to the binding as a Function of the mass number A.

$\frac{B E(A-2)-3 B E(A-1)+3 B E(A)-B E(A+1)}{4}$

Probability distributions of the $\mathrm{O}-12$ wavefunctions as a function of the number of the HO excitation quanta (shown along the horizontal axis, $n \hbar \omega=0,2, \ldots, 14 \hbar \omega)$
the present extended pairing model (blue)
the $a b$ initio SA-NCSM (red)
with the bare JISP16 nucleon-nucleon interaction in the 14 HO shell model space and for $\hbar \omega=15 \mathrm{MeV}$

$\mathrm{SU}(3)$ content of the $0 \hbar \omega$ part of the $\mathrm{O}-12$ ground-state as compared to the corresponding $a b$ initio 14 -shell SA-NCSM results

O-18, new G

O-22, new G

Brief Summary

1) We established an E2 algebra to construct exactly solvable models for both Boson and Fermion systems.
2) In application of the model for the IBM, an extended U(5)$\mathbf{O}(6)$ Hamiltonian is constructed, which produces spectrum and E2 transition rates more close to those obtained from the collective E(5) model.
3) An exactly solvable spherical mean-field plus the extended monopole pairing up to infinite order is thus established, which includes the extended pairing model for deformed mean-field theory as a special case.
4) Our analysis shows that the model results with 11 j -orbits for ${ }^{12-28} \mathrm{O}$ are consistent with those of the ab initio SA-NCSM.

Contributors to this work also include

Kristina D. Launey, Jerry P. Draayer (LSU)

Xin Guan, Yu Zhang, Lianrong Dai (LNNU) Supported by NSFC (11405080, 11175078, 11375080), NSF (0904874); DOE (DE-SC0005248, FG02-13ER42025), LSU-LNNU joint program(9961).

Tank you!

