FISSION BARRIERS OF TWO ODD-NEUTRON HEAVY NUCLEI

KOH MENG HOCK ${ }^{1,2}$, L. BONNEAU ${ }^{2}$, T.V. NHAN HAO³, DAO DUY DUC ${ }^{4}$, P. QUENTIN ${ }^{1,2,3,4}$

UTM JOHOR, MALAYSIA
CENBG BORDEAUX, FRANCE
UNIV. HUE, VIETNAM
TDTU HO CHI MINH CITY, VIETNAM

SDANCA-15, Sofia, 8-10 October 2015

EFFECTIVE INTERACTIONS

The fission barriers of the ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$ nuclei
have been calculated within the
Hartree-Fock plus BCS with blocking formalism
Two Skyrme force parametrizations have been considered SIII and SkM*
They are known to reproduce reasonably well systematic spin and parity properties of the ground states of odd nuclei

The pairing correlations have been generated by a seniority force whose parameters have been fitted to reproduce «experimental » gaps

$$
\Delta_{n}(N, Z)=\frac{(-1)^{N}}{2}\left[S_{n}(N, Z)-S_{n}(N+1, Z)\right] \quad \text { and } \quad \Delta_{p}(N, Z)=\ldots
$$

for some well deformed odd nuclei having reasonably high gaps in the actinide region
L. Bonneau, P. Quentin, P. Möller, Phys. Rev. C76, 024320 (2007)

Calculated ground-state spin compared to experiment

Calculated ground-state spin compared to experiment

Calculated ground-state spin compared to experiment

Comparison restricted to the common sets of spherical and deformed nuclei (same constraints on V_{PO} and β_{2}): Skyrme only

Force	Sph. (179)	Def. (125)	Total (304)
SIII	$86.0 \%(93.8 \%)$	$44.0 \%(65.6 \%)$	68.7% (82.2\%)
SkM *	76.0% (91.6\%)	38.4% (64.0\%)	60.5% (80.3\%)

These two interactions provide also reasonably good s.p. wavefunctions
in particular for their magnetic properties as seen from a recent study on magnetic moments of some deformed nuclei
L.Bonneau, N. Minkov, Dao Duy Duc, P. Quentin, J. Bartel Phys. Rev. C91, 054307 (2015)

TABLE VIII. Magnetic moments (in μ_{N} units) with the SIII parametrization: intrinsic contribution $\mu_{\text {intr }}$, collective gyromagnetic ratio $g_{R}^{\text {(unpol) }}$ calculated without core polarization, corresponding total magnetic moment $\mu_{\text {tot }}^{\text {(unpol) }}$, collective gyromagnetic ratio $g_{R}^{\text {(pol) }}$ calculated with core polarization, corresponding total magnetic moment $\mu_{\mathrm{tot}}^{\text {(pol) }}$, and experimental $\mu_{\text {exp }}$ values taken from Ref. [30] (by convention, the most recent value is retained when several entries appear).

Nucleus	K^{π}	$\mu_{\text {intr }}$	$g_{R}^{\text {(unpol) }}$	$\mu_{\text {tot }}^{(\text {unpol) }}$	$g_{R}^{(\mathrm{pol})}$	$\mu_{\mathrm{tot}}^{(\mathrm{pol})}$	$\mu_{\text {exp }}$
${ }^{99} \mathrm{Sr}$	$5 / 2^{-}$	-0.753	0.262	-0.566	0.302	-0.537	-0.261(5)
	$3 / 2^{+}$	-0.630		-0.473	0.305	-0.447	
${ }^{99} \mathrm{Y}$	$5 / 2^{+}$	2.927	0.262	3.114	0.285	3.131	
${ }^{103} \mathrm{Mo}$	$3 / 2^{+}$	-0.624	0.249	-0.475	0.251	-0.473	
	$5 / 2^{-}$	-0.734		-0.556	0.213	-0.582	
${ }^{103} \mathrm{Tc}$	$5 / 2^{+}$	2.811	0.249	2.989	0.450	3.132	
	$3 / 2^{-}$	1.962		2.111	0.303	2.144	
${ }^{175} \mathrm{Yb}$	$7 / 2^{-}$	0.886	0.338	1.149	0.361	1.167	0.768(8)
${ }^{175} \mathrm{Lu}$	$7 / 2^{+}$	1.452	0.338	1.715	0.352	1.726	$2.2323(11)$
${ }^{179} \mathrm{Hf}$	$9 / 2^{+}$	-1.000	0.345	-0.718	0.327	-0.732	-0.6409(13)
${ }^{179} \mathrm{Ta}$	$7 / 2^{+}$	1.460	0.345	1.728	0.335	1.721	2.289(9)
	$9 / 2^{-}$	5.075		5.357	0.351	5.362	
${ }^{235} \mathrm{U}$	$7 / 2^{-}$	-0.768	0.324	-0.516	0.289	-0.543	-0.38(3)
${ }^{235} \mathrm{~Np}$	$5 / 2^{+}$	2.663	0.324	2.894	0.407	2.954	
	$5 / 2^{-}$	0.833		1.064	0.354	1.086	
${ }^{237} \mathrm{~Np}$	$5 / 2^{+}$	2.744	0.318	2.971	0.407	3.035	3.14(4)
	$5 / 2^{-}$	0.831		1.058	0.348	1.080	1.68(8)

These interactions are quite old SIII (1975), SkM* (1982)
As compared to more recent ones, they do not include some EDF components which were not considered in their fitting process (related e.g. to the square of the spin-current tensor or including a zero-range tensor component)

Yet

They show no spin instability near saturation As we saw they seem to yield reasonably good spectroscopic properties
It is therefore interesting to see how good they are to describe s.p. energy spectra and consequently fission barrier distributions according to the spin and parity for a given fissioning nucleus However we have used sometimes the SLy5* force to see...

The parameters of the seniority force

Only $n-n$ and $p-p$ pairing (12 MeV s.p. window around the chemical potential)
$\langle i \tilde{i}| \tilde{v}_{\text {residual }}|j \tilde{j}\rangle=\frac{G_{q}}{11+N_{q}}$

$$
\begin{aligned}
& G_{n}=-16.0 \mathrm{MeV}, G_{p}=-16.0 \mathrm{MeV} \text { for } \mathrm{SkM}^{*} \\
& G_{n}=-17.15 \mathrm{MeV}, G_{p}=-14.0 \mathrm{MeV} \text { for SIII. }
\end{aligned}
$$

Nucleus	$\Delta_{q}^{(3)}$		
	SkM^{*}	SIII	
${ }^{231} \mathrm{Th}$	510	739	661
${ }^{235} \mathrm{U}$	567	562	624
${ }^{239} \mathrm{Pu}$	525	490	444
${ }^{241} \mathrm{Pu}$	452	541	534
${ }^{245} \mathrm{Cm}$	678	641	469
${ }^{249} \mathrm{Cf}$	550	496	520
${ }^{231} \mathrm{~Pa}$	681	-	781
${ }^{237} \mathrm{~Np}$	573	541	568
${ }^{241} \mathrm{Am}$	502	860	470
${ }^{249} \mathrm{Bk}$	806	575	568

SOME THEORETICAL ASPECTS

The time reversal breaking

 due to the presence of the « odd» nucleon is taken into account self-consistently in the mean field approachIt has been explicitely shown to be perturbative
One can thus define unambiguously « quasi pairs » of states which are almost time reversal images

From these quasi-pairs we define a Bogoliubov-Valatin-like restricted Bogoliubov canonical transformation

Only seniority one states have been considered so far thus limiting ourselves to low energy s.p. excitations

Axial symmetry has been imposed
(a genuine limitation at least
for the description of the inner fission barrier) Intrinsic parity has not been imposed (necessary for a fair description of the outer fission barrier)

From calculated mean field energies to nuclear energies

For well deformed nuclei, as the considered actinide nuclei in their ground state and on the way to fission, we use the Bohr-Mottelson Unified Model ansatz

$$
\left|I M \alpha K \pi>=\sqrt{\frac{2 I+1}{16 \pi}}\left[D_{M K}^{I}\left|\Psi_{K \pi}^{\alpha}\right\rangle+(-1)^{I+K} D_{M-K}^{I} \hat{T} \mid \Psi_{K \pi}^{\alpha}>\right]\right.
$$

where $\left|\Psi_{M K}^{I}\right\rangle$ is the calculated BCS state
The Model Hamiltonian is $\quad \hat{H}_{B M}=\hat{H}_{\text {int. }}+\frac{\hat{\vec{R}}^{2}}{2 J_{\text {core }}} \quad$ with $\quad \hat{\vec{R}}=\hat{\vec{j}}_{\text {total }}-\hat{\vec{j}}_{\text {odd }}$
The diagonal matrix element of the intrinsic Hamiltonian $\hat{H}_{\text {int. }}$ is not the calculated BCS energy dubbed as

$$
\left\langle\Psi_{K \pi}^{\alpha}\right| \hat{H}_{S k y m e}\left|\Psi_{K \pi}^{\alpha}\right\rangle
$$

since the latter includes a spurious rotational energy due to the mean field approximation

It has been removed according to the Lipkin approximate ansatz

One gets

$\langle I M \propto K \pi| \hat{H}_{\text {int. }}|I M \propto K \pi\rangle=$
$\left\langle\Psi_{K \pi}^{\alpha}\right| \hat{H}_{\text {Slymel }}\left|\Psi_{K \pi}^{\alpha}\right\rangle-\frac{1}{2 J_{L}}\left[\left\langle\Psi_{K \pi}^{\alpha}\right| \hat{\vec{j}}_{\text {toat }}^{2}\left|\Psi_{K \pi}^{\alpha}\right\rangle-\hbar^{2} K(K+1)\right]$
One can show that $\left\langle\Psi_{K \pi}^{\alpha}\right| \hat{\vec{j}}_{\text {toot }}^{2}\left|\Psi_{K \pi}^{\alpha}\right\rangle \approx$
where on the rhs

$$
\left\langle\Psi_{K \pi}^{\alpha}\right| \hat{\vec{j}}_{\text {core }}^{2}\left|\Psi_{K \pi}^{\alpha}\right\rangle+\langle\alpha K \pi| \hat{\vec{j}}_{\text {odd }}^{2}|\alpha K \pi\rangle
$$

the first matrix element is calculated only with core particles the second is calculated for the s.p. state $|\alpha K \pi\rangle$ Assuming that $J_{\text {core }} \approx J_{L} \equiv J$ one gets for the diagonal matrix element of the Hamiltonian $\hat{H}_{B M}$

$$
\begin{aligned}
& \langle I M \alpha K \pi| \hat{H}_{B M}|I M \alpha K \pi\rangle=\langle I M \alpha K \pi| \hat{H}_{\text {int }}|I M \alpha K \pi\rangle \\
& \frac{\hbar^{2}}{2 J}\left\{\left[I(I+1)-2 \mathrm{~K}^{2}\right]+\langle\alpha K \pi| \hat{\vec{j}}_{\text {odd }}^{2} / \hbar^{2}|\alpha K \pi\rangle+\delta_{K, 1 / 2} a(-1)^{I+1 / 2}(I+1 / 2)\right\}
\end{aligned}
$$ and finally

$$
\langle I M \alpha K \pi| \hat{H}_{B M}|I M \alpha K \pi\rangle=\left\langle\Psi_{K \pi}^{\alpha}\right| \hat{H}_{S k y m e}\left|\Psi_{K \pi}^{\alpha}\right\rangle+\frac{\hbar^{2}}{2 J}
$$

$$
\left.\left\{[I(I+1)-K(K-1)]-\left\langle\Psi_{K \pi}^{\alpha}\right| \hat{\vec{j}}_{\text {core }}^{2}\left|\hbar^{2}\right| \Psi_{K \pi}^{\alpha}\right\rangle+\delta_{K, 1 / 2} a(-1)^{I+1 / 2}(I+1 / 2)\right\}
$$

One gets in particular for the rotational band head $\{\alpha, I=K, \pi\}$

$$
\left.E_{\alpha K \pi}^{b . h .}=\left\langle\Psi_{K \pi}^{\alpha}\right| \hat{H}_{S k y r m e}\left|\Psi_{K \pi}^{\alpha}\right\rangle+\frac{\hbar^{2}}{2 J}\left\{2 K-<\Psi_{K \pi}^{\alpha}\left|\frac{\hat{\vec{j}}_{\text {core }}^{2}}{\hbar^{2}}\right| \Psi_{K \pi}^{\alpha}\right\rangle-\delta_{K, 1 / 2} a\right\}
$$

TEST OF THE QUALITY OF THE BAND HEAD SPECTRA

We exclude data pertaining

- to bands attributed to particle-vibration couplings
- to bands with an excitation energy > 650 keV
(a typical gap value) since we deal only with seniority 1 states
We assume that inter-band Coriolis couplings are not significant
Moments of inertia J and decoupling parameters a are calculated using the standard formulae
- for J, Inglis-Belyaev (neglecting the small time-reversal violation) renomalized to take into account missing Thouless-Valatin terms
- for a, the expectation value of the $\hat{j}_{+} \hat{T}$ operator for the s.p. state of the «odd» particle, (assuming K = + 1/2)

$$
\Delta_{r m s}(\mathrm{keV})=250(\mathrm{SIII}), 350\left(\mathrm{SkM}^{*}\right), 650\left(\mathrm{SLy}^{*}\right)
$$

The situation is slightly worse for neighbouring odd-proton nuclei

$$
\Delta_{r m s}(\mathrm{keV})=450(\mathrm{SIII}), 500\left(\mathrm{SkM}^{*}\right), 460\left(\mathrm{SLy}^{*}\right)
$$

This might be due to the use of the Slater approximation for Coulomb exchange energy and field terms
J. Le Bloas, Meng-Hock Koh, P. Quentin, L. Bonneau, J.I.A Ithnin, Phys . Rev. C84, 0143310 (2011)

The Slater approximation pushes systematically s.p. levels upwards (occupied), downwards (unoccupied)

Intrinsic quadrupole moments calculated Q_{0} (in barns)
vs those deduced from experimental $B(E 2)$ for even nuclei in the region

Nucleus	SkM	SIII	SLy5*	Exp
${ }^{234} \mathrm{U}$	10.48	10.14	10.26	$10.35(10)$
${ }^{236} \mathrm{U}$	10.79	10.37	10.62	$10.80(7)$
${ }^{238} \mathrm{Pu}$	11.49	11.16	11.34	$11.26(8)$
${ }^{240} \mathrm{Pu}$	11.71	11.27	11.51	$11.44(13)$

Experimental spectroscopic

calculated $Q_{0} \quad 4.55(9)$ for odd nuclei in the region

$$
Q^{(s)}=\frac{3 \mathrm{~K}^{2}-\mathrm{I}(\mathrm{I}+1)}{(\mathrm{K}+1)(2 \mathrm{I}+3)} \mathrm{Q}_{0}
$$

${ }^{237} \mathrm{~Np}$	$5 / 2$	4.01	3.90	3.97	$+3.866(6)$
	$5 / 2$	3.96	3.89	3.92	$+3.85(4)$
${ }^{241} \mathrm{Am}$	$5 / 2$	4.30	4.24	4.25	$+3.81(1.2)$
					$+3.14(5)$
					$+4.20(13)$

SPECTRUM IN THE FISSION ISOMERIC WELL ($\left.{ }^{239} \mathrm{Pu}\right)$

SPECTRUM IN THE FISSION ISOMERIC WELL ($\left.{ }^{235} \mathrm{U}\right)$ No available data

9/2- [348 kev]

$5 / 2^{+}[66 \mathrm{keV}]$

A SELECTION OF SOME FISSION BARRIER RESULTS

FISSION BARRIERS
OFTHREE PLUTONIUM ISOTOPES
Intrinsic Parity Conserved
With Rot. Correction
${ }^{238} \mathrm{Pu}$

FISSION BARRIERS
OFTHREE PLUTONIUM ISOTOPES SPECIALIZATION ENERGIES

EFFECT OF INTRINSIC PARITY BREAKING ON THE FISSION BARRIERS

With Rotational Correction

PROJECTION ON GOOD PARITY STATES ITS EFFECT ON THE OUTER FISSION BARRIERS

T.V. Nhan Hao, P. Quentin, L. Bonneau, Phys. Rev. C86, 064307 (2012)

POSSIBLE AMBIGUITY IN NON-PROJECTED CALCULATIONS IN THE INNER PART OF THE OUTER FISSION BARRIERS

Total energies
${ }^{239} \mathrm{Pu}^{\star}$
SkM^{\star}

7/2 states

FISSIONING NUCLEUS
E_{A} (Eval.) $\quad E_{A}$ (Calc.) $\quad E_{B}$ (Eval.) $\quad E_{B}$ (Calc.)

${ }^{234} \mathbf{U}$	4.80	5.42	5.50	
${ }^{235} \mathbf{U}$ *	5.25	7.18	6.00	5.94
${ }^{236} \mathbf{U}$	5.00	6.21	5.67	
${ }^{238} \mathbf{P u}$	5.60	6.45	5.10	
${ }^{239} \mathbf{P u}^{* *}$	6.20	7.71	5.70	4.66
${ }^{240} \mathbf{P u}_{\mathbf{U}}$	6.05	$\mathbf{7 . 2 5}$	5.15	5.50 ***

SkM*

* 7/2- $2^{-} 1 / 2^{+} \quad * * *$ HTDA Pairing Calculations

Axial symmetry is imposed near inner barriers (an effect of $\sim 1 \mathrm{MeV}$)

CONCLUSIONS

WHAT HAVE WE LEARNED ?

- « Old» effective interactions provide rather good spectroscopic properties (especially SIII) and fission barrier heights (especially SkM*) Yet with error bars at least of a couple of 100 keV
- Specialization energies may reach the 1 MeV range

WHAT REMAINS TO BE DONE ?

- Break the axial symmetry at least near the inner barrier
- Improve on the treatment of pairing beyond BCS use a particle number conserving approach as the HTDA
- Explore the capacities of « new » Skyrme parametrizations (SLy5* did not prove to be a successful bet)

