Int. Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" ed. Nikolay Minkov, Heron Press, Sofia 2015

Description of Shape Transitions in Superheavy Nuclei within Covariant Density Functional Theory

<u>G.A. Lalazissis</u>¹, V. Prassa^{1,2}, T.Niksic², D. Vretenar²

¹Department of Theoretical Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

²Physics Department, Faculty of Scince, University of Zagreb, 10000 Zagreb, Croatia

Abstract

A covariant energy density functional, adjusted to nuclear matter equation of state and empirical masses of deformed nuclei, is applied to study shapes of superheavy nuclei. Selfconsistent mean field calculations predict a variety of spherical, axial and triaxial shapes of long lived superheavy nuclei. Alpha decay energies and half lives are compared with available experimental information. A microscopic quadrupole collective hamiltonian, based on the relativistic energy density functional, is used to study the effect of explicit treatment of collective correlations in the calculations of Q_a values and half lives.