Int. Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" ed. Nikolay Minkov, Heron Press, Sofia 2015

Clustering as a Possible Origin of Deformation in ³²S

P. Petkov¹, M. Stoyanova²

¹Institute for Nuclear Research and Nuclear Energy, BAS, 1784 Sofia, Bulgaria ²Faculty of Physics, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria

1

Abstract

Lifetime measurements for the 2_1^+ level in 32 S reveal through the deduced B(E2) transition strength to the ground state a considerable quadrupole deformation, $\beta_2 \ge 0.33$. A phenomenological analysis of the data based on two-band mixing is able to disentangle the contributions of the spherical and highly-deformed unperturbed bands. It is discussed that the highly-deformed structure may arise from large-scale clustering involving magic 16 O.