High-K Isomers and the Role of β_6 Deformation

P.M. Walker¹, H.L. Liu², F.R. Xu³

- ¹Department of Physics, University of Surrey, Guildford GU2 7XH, UK
- ²Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
- ³State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

Abstract

Recent relativistic projectile fission experiments at RIBF, RIKEN have enabled the discovery of high-K isomers in neutron-rich $Z\approx 64$ nuclei, in particular the N=102 isotones $^{164}{\rm Sm}$ and $^{166}{\rm Gd}$ [1], which are relevant to r-process abundances. Similar to the $A\approx 250$ region of high-K isomers [2], β_6 deformation has a significant effect on the single-particle energies and may also be important in the formation of a deformed sub-shell gap at N=102. These two regions of high-K isomers will be compared, with specific reference to β_6 deformation. Observables related to deformed sub-shell gaps will also be discussed.

- [1] Patel Z et al. 2014 Pys. Rev. Lett. 113 262502
- [2] Liu H L, Xu F R, Walker P M and Bertulani C A 2011 *Phys. Rev.* C **83** 011303(R)