Structure evolution and shape phase transitions in odd-mass nuclei

D. Bucurescu, N.V. Zamfir HH-NIPNE, Bucharest

Quantum phase transitions (QPT) :

Rather extensively studied in Even-even nuclei

- Shape phase transitions : abrupt changes in g.s. properties due to competition between different shapes.
- Importance of choice of a right *control parameter: experimental recognition of critical phenomena* only when using an empirical structure property, e.g., *E(2⁺)*, which varies almost continuously, rather than *N* (discontinuous !) (Casten, Zamfir, Brenner, 1993).
- *Theoretical*: classes of symmetries as *critical point solutions* in addition to the three IBM dynamical symmetries. Iachello: *X(5), E(5)*.
- Certain nuclei experimentally recognized as close to a critical point symmetry.

Much less studied in Odd-mass nuclei

- *Experimental:* major difficulty: diversity of low-energy excitations, cannot follow the same quantity in many nuclei.
- Theoretical: several particular critical point Bose-Fermi symmetries proposed.

?#1: the influence of unpaired fermion on the location and nature of PT
?#2: identify observables related to control and order parameters
?#3: signatures of the QPT; possible critical point nuclei

Empirical approach:

Investigate evolution of level structures based on intruder, or unique parity orbitals (UPO)

Extremely pure wave functions (high j-purity) : nearly identical effects for any UPO
 → Apply investigation method (e.g., correlations between certain level structure observables) to different mass regions → cover consistent part of nuclear map

Unique parity orbitals (UPO) considered:

Shell 28 - 50 : $1f_{7/2}$, $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$, $1g_{9/2}$ Shell 50 - 82 : $1g_{7/2}$, $2d_{5/2}$, $2d_{3/2}$, $3s_{1/2}$, $1h_{11/2}$ Shell 82 - 126 : $1h_{9/2}$, $2f_{7/2}$, $2f_{5/2}$, $3p_{3/2}$, $3p_{1/2}$, $1i_{13/2}$

ENSDF: ~ **500** nuclei with $30 \le Z \le 95$

 $R_{j}^{s} = (j+2)/(2j+3)$: ≈ 0.54

Particle-plus-Rotor Model

H ≈ s.p. (intrinsic) + rotation of inert core + Coriolis interaction

Limit coupling schemes within the PRM (axially symm. rotor) (*Ring&Schuck, ch.3; Casten, chs. 8,9*)

(i) Weak coupling

When: For *very small core deformations* : up to $\beta_2 \approx 0.14$ ($R_{4/2} = E(4^+)/E(2^+) \approx 2.0$ to ~2.2) → favored *states j, j+2, j+4, ···* : spacings similar to gsb (0⁺, 2⁺, 4⁺, ···) of the core.

(ii) Strong coupling (deformation alignment)
When: Coriolis interaction m.e. are small compared to s.p. energy splittings;
(a) For *large deformations* β₂ > ~0.24 (R_{4/2} ≥ 3.0)
(b) small Coriolis m.e.; large-j (UPO): when odd particle in high-Ω Nilsson orbitals.
→ favored (j, j+2, j+2, …) and unfavored (j+1, j+3, …) merge into a Δ*l=1 rotational band*.

(iii) **Decoupling** (rotational alignment)

When: Coriolis interaction is strong and cannot be neglected;

for large-j UPO: when odd particle in low- Ω states;

occurs for *intermediate deformations*: $\beta_2 \sim 0.14$ to ~ 0.23 (R_{4/2} ~ 2.2 to ~ 2.7)

→ favored states (j, j+2, j+2, …) spacings similar to gsb of the core; unfavored states (j+1, j+2, …) lie at higher energies.

A first look at evolution of UPO structures

Oblate shapes

(Au, Hg, ¹⁴¹Sm: N.J. Stone, Table of nuclear electric quadrupole moments, IAEA, INDC-0650, 2013)

Hole states:

odd particle in **low-\Omega** orbits: decoupling .

Critical PST in even – even nuclei (the X(5) critical point)

Casten, Zamfir, Brenner, PRL 71(1993)227

vi_{13/2} structures: candidate nuclei for the critical point of the phase transition *decoupling* \rightarrow *strong coupling*

	Core	X(5)	R⁵ _j ≈0	Ν
¹⁵³ Sm ⁶²	¹⁵² Sm	1	×	90
¹⁵⁵ Gd ⁶⁴	¹⁵⁴ Gd	(✓)	~	90
¹⁵⁷ Dy ⁶⁶	¹⁵⁶ Dy	`	~	90
¹⁶¹ Er ⁶⁸	¹⁶⁰ Er	(🗸)		92
¹⁶³ Yb ⁷⁰	¹⁶² Yb	√		92
¹⁶⁵ Yb ⁷⁰	¹⁶⁴ Yb		X	94
¹⁶⁷ Hf ⁷²	¹⁶⁶ Hf	√		94
$^{171}W^{74}$	^{170}W	√	X	96

Z: 55(Cs) ··· 75(Tb) N: 62 ··· 82 (contours # 1,3)

Possible critical SPT at A~130:

	Core	Ν
¹²⁵ La ⁵⁷	¹²⁴ Ba	68
^{127,129} Pr ⁵⁹	^{126,128} Ce	68,70
¹³³ Pm ⁶¹	¹³² Nd	72
¹³⁵ Eu ⁶³	¹³⁴ Sm	72

Theoretical

Critical point symmetry models for odd-A nuclei:

- E(5/4): Bose-Fermi symmetry for j=3/2 particle coupled to E(5) core (lachello PRL95(2005)052503) some E(5/4) features in ¹³⁵Ba (Fetea et al, PRC73(2006)051301(R))
- *E(5/12)*: multi-orbit: *j*=1/2,3/2,5/2 (Alonso, Arias, Vitturi, *PRC75(2007)064316*)
- X(5/(2j+1)) j-particle coupled to X(5) core (Zhang, Pan, Liu, Hou, Draayer PRC82(2010)034327)
 limited agreement for ¹⁸⁹Au (j=1/2), ¹⁵⁵Tb (j=5/2); multi-orbit approach needed.
- Recent approach to shape phase transitions in odd-A:

energy density functional theory + particle-plus-boson core coupling: define possible signatures related to deformations, exc. energies, E2-trans. rates, separation energies (as quantum order parameters).

Nomura, Ničsić, Vretenar PRC94(2016)064310: Eu, Sm with N~90

Nomura, Ničsić, Vretenar PRC96(2017)014304: Ba, Xe, La, Cs with A~130, γ-soft

SUMMARY

Correlations between UPO structure observables (energies, energy ratios):

- Interesting structure evolution along the three limit coupling schemes of the PRM (weak coupling, decoupling, strong coupling)
- Evidence for critical PT (*fast transition from decoupling to strong coupling*) for $vi_{13/2}$ structures at N=90-92, and $\pi h_{11/2}$ structures at N=70-72, correlated with the critical SPT in the even-even core nuclei (X(5) critical point).

Features of this transition:

- fast change in the pattern of E(j+4) versus E(j+2) at some critical value $E_c(j+2)$
- discontinuous change in dE(j+4)/d(Ej+2) at $E_c(j+2)$
- \sim degeneracy of the energies of favored and unfavored sequences at $E_c(j+2)$
- > Shape phase transition corroborated by systematics of mass-related quantities: dS_{2n}
- Critical point symmetry model description of these observations, as well as of other low-excitation structure features are welcome.