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Outline of the Talk 

•  Introduction and Motivation 
•  Surrogate Reactions 
•  Strongly Deformed Nuclei 

–  Single particle states 
–  156Gd✸ spectrum (Bohr-Mottelson rotor plus particle model) 
–  Sturmian basis approach for reaction cross sections 
–  Jπ distribution estimates for 157Gd+3He → 4He+156Gd✸ 

•  Outlook 



Remnant of a supernova"

• All elements starting with carbon (C) are products of stellar evolution. 	

• Most light to intermediate nuclei are products of various nuclear burning-cycles. 	

• Heavier nuclei along the valley of stability are produced via neutron capture reactions. 	

• Elements away from the valley of stability are produced in explosive events.	


slow- / rapid- neutron	

capture process 	


Cat’s eye nebula"

Many of the actors (nuclei) in the play (nucleosynthesis) 	

have very important, albeit, episodic roles (short lifetime). 

Origin of the Elements ���
s-process branch point nuclei are unstable	
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If two reactions proceed via formation of the same intermediate equilibrated compound 
system  B*  then  the  cross  section  for  the  desired  reaction  a+A→B*→C+c,  which  might  
involve an unstable target A, may be deduced using theoretical modeling and experimental 
data for the surrogate reaction d+D→b+B*→C+c for a stable target D. 	


The Surrogate Method ���
deducing reaction cross sections on unstable nuclei from reactions on stable nuclei	




Reactions with Deformed Nuclei 
Computational Strategy and Methods 

•  Main assumptions: 
–  Direct particle transfer to/from a deformed single particle state (sps). 
–  Axially deformed Woods-Saxon potential defines the deformed sps. 
–  Reaction cross section can be computed with the available reaction codes by using 

superposition of Sturmian spherical single particle states. 

•  Computational steps where coding or scripting is completed: 
–  WSBETA code to obtain energies and  deformed states (ΨE) for a given deformed potential,  

big deformations careful numerical treatment.  
–  DWUCK* code generates the set of spherical WS potentials and non-orthogonal Sturmian 

basis wave functions ΦEnlj for the desired particle binding energy E. 
–  WSBETA code uses DWUCK’s spherical WS potentials to compute the Sturmian basis wave 

functions in the same basis where the deformed state ΨE  is given. 
–  CalculateCij code computes the overlaps Cnlj=<ΦEnlj |ΨE> using WSBETA wave functions. 
–  CHUCK* CC-code uses ΨE(r)=∑CnljΦEnlj to compute the reaction cross sections. 

•  Auxiliary codes 
–  AddStates code uses Cnlj and ΦEnlj(r) to verify that the Sturmian basis  is sufficiently big and 

to construct ΨE(r) as superposition of Sturmian basis states.  
–  Various python scripts and Mathematica notebooks to prepare inputs, run the codes, 

collect, organize and visualize the results…. 

*  Essential help from P. D. Kunz, Dept. of Physics &Astrophysics, U. of Colorado, Boulder, CO 
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Solid lines - exact numerical results 
Dashed lines - linear approximation 
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Need for Careful Numerical Treatment 
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Neutron Single Particle States 
n Energy 2Mj Parity n Energy 2Mj Parity n Energy 2Mj Parity
1 -39.706 1 1 20 -18.202 5 1 40 -7.932 1 -1
2 -36.096 1 -1 21 -18.096 5 -1 41 -7.867 1 1
3 -34.408 3 -1 22 -17.785 3 -1 42 -7.607 3 -1
4 -33.782 1 -1 23 -16.681 1 -1 43 -7.404 3 1
5 -31.401 1 1 24 -16.586 1 1 44 -7.058 1 1
6 -30.202 3 1 25 -16.579 7 1 45 -6.842 11 -1
7 -29.193 1 1 26 -14.649 1 1 46 -6.603 3 1
8 -28.322 5 1 27 -14.645 3 1 47 -6.163 3 -1
9 -26.503 3 1 28 -14.435 9 1 48 -5.765 5 1
10 -25.983 1 -1 29 -13.723 1 -1 49 -5.367 5 -1
11 -25.804 1 1 30 -13.179 3 -1 50 -4.815 1 -1
12 -25.100 3 -1 31 -12.396 3 1 51 -4.583 7 1
13 -23.653 5 -1 32 -12.198 5 -1 52 -4.102 5 -1
14 -23.370 1 -1 33 -12.073 5 1 53 -3.076 9 1
15 -21.625 7 -1 34 -11.033 1 1 54 -2.665 7 -1
16 -21.116 3 -1 35 -10.829 7 -1 55 -2.512 1 1
17 -20.678 1 -1 36 -9.785 5 1 56 -2.483 1 -1
18 -20.056 1 1 37 -9.308 1 -1 57 -1.901 3 -1
19 -19.379 3 1 38 -9.072 9 -1 58 -1.772 7 -1

39 -8.791 7 1 59 -1.224 11 1
60 -1.103 3 1
61 -0.627 1 1
62 -0.521 3 -1
63 -0.171 1 -1
64 0.120 1 -1

157Gd 

Unpaired valence 
neutron at level 47. 
A=157, N=93, Z=64 
 
157Gd: Sn = 6.36 MeV  
 
En=0 … 1 MeV 
 
n+155Gd= 

 =156Gd+Eext 
157Gd-n= 
 
Eext=8.5 … 9.5 MeV 
 
156Gd: Sn = 8.536 MeV 
 
 
BEn ~ -14.8987 MeV 
single particle levels 
relevant for the 
surrogate reaction 



Excited states in 156Gd 
model: neutron hole in the 157Gd core 

Coriolis coupling  

BCS pairing 



Excited States in 156Gd 
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Wave Function Spreading 
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Model space convergence in 
Sturmian basis  

Hβ≡0 (V0 )φV0 ;εnljm = εφV0 ;εnljm

B. L. Andersen, B. B. Back, and J. M. Bang, Nucl. Phys. A 147, 33 (1970).  

WSBETA: S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski  
and T. Werner, Comp. Phys. Comm. 46, 379 (1987). 



s.p.s. in Sturmian basis 
Model Space Overlap
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Individual x-sections 

BCS pairing 



Total cross section σ(Ε) 
smearing function ρ(Ε,Γ) dependence 
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Total cross section σ(Ε) 
model space N-dependence 
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a=b=0.1 



P(Jπ, E) Distribution 
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P(Jπ) Distributions E= 8, 8.5, 9, 9.5 MeV 

  

  

  

  



Outlook 
Ø  Sturmian basis: 

–  Guarantees the correctness of the wave-function tail; 
–  Provides fast convergence! 
–  Consistency checks: 

•  Calculate basis overlap matrix for DWUCK w.f. 
•  Compare the basis overlap matrices 

Ø  Need better understanding of: 
–  the norm issue for few of the states; 
–  E-deviations for large model spaces; 
–  Smearing function for comparison to experiments!	

–  When are the Pairing and Coriolis mixing important? 

Ø Compare to other methods, codes, and experiments … 
Ø  Study the x-sections for the desired reaction n+155Gd! 

 


