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INTRODUCTORY REMARKS

Beyond the rigid rotor approach of nuclear rotational states

There are two dominating perturbating effects 

Rotational stretching / anti-stretching

- collective due to the centrifugal forces

- « quantal » due to HF field changes  

Weakening of pair correlations by pair alignment

- gradual, collective

             - sudden,  individual

           backbending, a particular case 

of band crossing

Other effects 

as e.g. coupling with vibrations

(as octupole modes in SD bands)
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ℏ2
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I ( I +1) J (Ω) = cst

Ω ↑ β ↑ J ↑

Ω ↑ ∆ ↓ J ↑



  

Therefore the moment of inertia J is varying with I 

 

One gets due to the I-dependence of J(I)

One then defines two moments of inertia

With the Lagrange parameter         of the Routhian approach, thus such that

`

Through some approximations (eg finite differences                    and             )

one connects usually these local quantities with transition energy data  
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Routhian HTDA calculations

Yrast SD rotational band 
    of 194Hg 

 - Small rotational deformation
 effect (anti-stretching) at low Ω
 
 -influence on J 
of a proton  pairing gap 
spuriously vanishing (HFB) 
or merely diminishing (HTDA)
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An example, among many, of the I-dependence of J



  

In this talk we will consider  only one of the collective effects
namely the pairing quenching effects 

As well-known in the adiabatic limit (low Ω), 
for the same canonical basis
the Inglis-Belyaev cranking formula  yields moment of inertia
is reduced from its normal phase value (as in the Inglis formula )
in the presence of pairing correlations

This has been first analyzed by B.R. Mottelson and P.G. Valatin
and dubbed as the Coriolis Anti Pairing (CAP) effect 

WHAT ARE WE PROPOSING HERE ?

A polynomial expression (3rd  order in       ) 
for the energies within a rotational band of well-d eformed nuclei

Different from mere parametrizations
- original VMI approach (from G. Scharff-Goldhaber et al.,1976 on)
- quadratic expression in      (see eg R. Casten's textbook)
- variational approach with an ad hoc dependence of  J on the pairing gap
   (K. Pomorski et al.)

Ī 2

Ω2



  

Here the polynomial mathematical expression is fully det ermined 
by the assumed dynamical behaviour 

Two adjustments  only are made for each nucleus from data by inserti ng
- the equilibrium quadrupole deformation 
- the energy of the 2 + state

We will consider a model involving intrinsic vortical currents  
as proposed in

P. Quentin, H. Laftchiev, D. Samsoen and I.N. Mikha ilov, Phys. Rev. C69, 054315 (2004)

in which one couples pairing generated intrinsic vortical currents  
(i.e. in the inertial frame)
with those responsible for the global rotation 
(of the inertial frame with respect to the lab fram e)

We describe this coupling using the linear divergen ce-free velocity field
within the so-called 
Chandrasekhar S-ellipsoid's theoretical framework



  

INTRINSIC VORTICAL CURRENTS 
AND THE ROTATIONAL PAIRING QUENCHING
In what follows we couple two rotational modes : gl obal and intrinsic  

From Routhian HFB calculations, one may quantify 
the intrinsic vortical currents generated by the gl obal rotation 
in terms of the expectation value of the so-called 

Kelvin circulation operator       defined as follows. 
Consider the case of the so-called Chandrasekar's S type ellipsoids  
further assumed to be axially symmetrical (with Oz as the symmetry axis)
and where the vorticities of the global and intrinsic modes of an enclosed 
fluid are aligned or anti-aligned ( e.g. on the x-axis)
The operator–form of the Kelvin circulation  (acting on wavefunctions) is

where q is the semi-axis ratio of the considered el lipsoid 
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I.N. Mikahailov,
D. Samsoen,
P. Quentin, 
Nucl. Phys. A 627
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This product of transformations yields a rather  general  field  linear  in
   divergence-free (i.e. tangential and thus non-deforming) 
of a fluid bounded by an ellipsoidal container
   in the container's body-fixed (i.e. intrinsic) f rame
It generates a wide class of modes
   when combined 
   with the global rotation
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It has been shown for both normal or super deformed  nuclear states that 

      Routhian HFB calculations 
Constrained Routhian HF calculations

yielded astonishingly similar solutions when constraining 
the RHF solutions to have the same expectation valu e of         as in RHFB

Conclusions
The S-ellipsoids type of intrinsic vortical current s are relevant here
But, using this for constrained Routhian HF calcula tions is not useful 

in practice , since one has first to perform Routhian HFB calcu lations

δ{ Ĥ �Ω Î x } = 0
δ{ Ĥ �Ω Î x � ω K̂ x } = 0

K̂ x

H. Laftchiev, 
P. Quentin,
D. Samsoen
and I .N. Mikhailov,
Phys. Rev. C 67
(2003) 014307.



  

Thus one has built up a simple model 
relating the two relevant angular velocities ω and Ω as follows

The frequency  ω is described as a function of Ω such that 

-  the product Ωω  is negative ( a counter rotation )
-  |ω| is proportional (all other things being kept cons tant) to Ω 
(the faster the rotation, the stronger the counter e ffect )
-  ω is also proportional to a “pair condensation energy”  (all other things 
being kept constant) E cond  defined as the expectation value 
of the  residual interaction (thus a positive quant ity) 
which is a decreasing function of Ω and approximated as

 
           where E 0 is the pair condensation energy at zero spin

Thus 
             
The critical frequency  Ωc (vanishing pairing) is defined 
(somewhat as in superconductors) by equating the ro tational energy at 
zero pairing with twice E 0 (pair condensation energy) at zero spin

Econd (Ω)= E0 {1 � (
Ω
Ωc

)
2

}

ω(Ω)=� kΩ { 1 � (
Ω
Ωc

)
2

}

Ωc
2 =

4∣E0∣

J rigid

using J rigid since at zero pairing, the rigid moment of inertia is a valid approximation



  

The model parameters E 0  ,k and J
rigid

 
are determined from nuclear properties at zero angular velocity

Then, performing Constrained RHF calculations with the model ω(Ω)

one gets results in excellent agreement with those of RHFB calculations  
as long as merely the collective pairing quenching mode is at work

δ{ Ĥ �Ω Î x � ω(Ω) K̂ x }= 0

CRHF

RFHB

Model

P. Quentin, 
H. Lafchiev, 
D. Samsoen 
and
I.N. Mikhailov, 
Phys. Rev. C69,
054315 (2004)



  

From that, build a polynomial expression of the energy as a function  of Ω 

Take a quadratic approximation for the excitation e nergy  as a function of 
the angular velocities is postulated (a relatively low velocity ansatz) as

 

introducing the generalized moments of inertia A,B,C  
almost equal to the rigid body moment of inertia J

R 
(see below)

The function ω(Ω) could be approximated  at low velocity Ω as 

thus introducing the experimental first 2 + energy

one gets a second order equation for k as               

with 0 < k < 1 (the counter-rotation never equates the global rotation)

defining thus fully the polynomial expression of th e energy
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From the semiclassical ETF calculations (up to the second order in    ) of
   I.N. Mikhailov, P. Quentin and D. Samsoen, Nucl. Ph ys. A627 (1997) 259
one gets for an axial ellipsoid defined by an axis ratio q, q > 1 when prolate

(to which a proper spin contribution - known for C-  should be added)
from which one easily gets the hierarchy B < A < C

Such an ordering of A, B and C has been actually co nfirmed 
in the adiabatic microscopic calculations of
P. Quentin, H. Lafchiev, D. Samsoen and I.N. Mikhai lov, Phys. Rev. C69 (2004) 054315
where typically (C – B) / A ~ 10% (ND states), 15% (SD states)

For all nuclei  we have taken as a rough evaluation 
of the zero spin « pair condensation » energy  
E(0) = - 4.6 MeV approximated as twice the correlat ion energy 
as given in S.G. Nilsson et al., Nucl. Phys. A131 (1969) 1.

ℏ
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J rigid
0 =

1
68.4

A5/3 MeV�1ℏ2

J (α) = J rigid
0 {1 +

1
2
α +

9
7
α2 } with α = √5/4π β

Apart from the 2 + energies, 
the only piece of data introduced for each nucleus  are 
the rigid body J

rigid
  values at equilibrium deformation

 
For that we use a rough estimate of their A-dependence at sphericity
from the semiclassical self-consistent ETF calculat ions of  
K. Bencheikh, J. Bartel and P. Quentin, Nucl. Phys.  A571 (1994) 518                                          
                   

The deformation dependence is given as in a usual LDM   
for an axial quadrupole deformation at lowest order s

            
The β parameter values are taken from the B(E2) data com pilation of
S. Raman et al., Atomic Data Nucl. Data Tables 78 ( 2001) 1

and when not available from the theoeretical system atic study of 
www-phynu.cea.fr/HFB-5DCH-table.htm
J.-P. Delaroche et al., Phys. Rev. C81 (2010) 01430 3



  

The last theoretical task is to determine the value  of the velocity Ω 
corresponding to a given spin I theoretically  Ω(I) 
 It is performed through the Lagrange multiplier relation

Then one obtains with

This expression of I as a function of Ω is monotonically increasing 
and can thus be safely inverted to get Ω for each desired value of I

Calculations have been performed for all nuclei in and around 
the rare-earth (52 nuclei) and actinide (31 nuclei)  regions
 
for which the ratio                                is larger than 3   
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Eexp(4+)
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Exp.

LIMITS OF THE APPROACH

As already mentioned it takes only into account CAP  effects.
Other effects as eg centrifugal stretching are not described. 

As an example we show the data on J (2) 
for even-even Uranium isotopes (from 230U to 240U).
A reasonable agreement is a priori  only expected for  
corresponding for these isotopes to band states wit h  Eexcit  ~ 1.5 MeV

ℏΩ ⩽~ 0.17 MeV

ℏΩ



  

INITIAL TEST OF OUR INTRINSIC VORTICAL MODEL

Calculations labelled (1)  : Experimental angular velocities
Calculations labelled (2) : Model-derived angular velocities

232U

I (ħ)  E
calc

(2)      Eexp (keV)      Ecalc (1)
 
 2      48                48                48
 4      159              157              153
 6      328              323              320
 8      553              541              544    
10     829              806              817
12     1151            1112            1135
14     1515            1454            1491
---------------------------------------------------
16     1918            1828            1879
18     2356            2232            2284

238U

I (ħ)   E
calc

(2)    Eexp (keV)     Ecalc (1)
 
 2       45                45                45
 4       150              148              147
 6       310              307              312
 8       523              518              542    
10      785              776              837
12      1091           1077            1192
14      1437           1416            1601
---------------------------------------------------
16      1821           1788            2052
18      2239           2191            2284
20      2689           2619            2978
22      3167           3068            3421
24      3673           3535            3846
26      4204           4018            4285
28      4759           4517            4823

Even though calc. (2)  are less
phenomenological than  calc. (1), 
they lead to results comparable 
and sometimes better e.g. in 238U
yielding some confidence in the model
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A more demanding comparison : kinematical moments o f inertia
Some actinide nuclei

Appearance in some cases of 
backbending effects and/or coupling to other modes



  Rare-earth nuclei are in general less prone to show  a pure CAP behaviour
(see eg Z. Szymanski et al. )

In and around the rare earth region



  

Erbium isotopic series
(from A =160 to A = 172)



  

                       CONCLUSIONS

Our Variable Moment of Inertia model
stemming from the coupling of two collective currents
à la Chandrasekhar (S-ellipsoids)
yields  a simple yet efficient sixth order polynomial  formula for E( Ω)

What is it good for ?

- confirms the already established relevance of the se intrinsic vortical 
currents to describe the CAP

- may indicate from data 
when and where (in I) the CAP is the only mechanism  at work
when and where it couples with other dynamical effe cts

- may serve to correct with an energy uncertainty o f less than ~ 100 keV
theoretical results at moderately high spins relyin g on adiabatic moments 
of inertia (as eg microscopically based Bohr Hamilt onian calculations)

2+


