# Shape effects in E2 transition rates from Z ≈ 76 high-spin isomers

- historical introduction
- structural changes along the yrast line

Phil Walker

**UNIVERSITY OF** 

SURREY

- K isomerism
- K-forbidden transition rates
- $N_p N_n$  dependence

Isomer prediction: Soddy, Nature 99 (1917) 433 "We can have isotopes with identity of atomic weight, as well as of chemical character, which are different in their stability and mode of breaking up."



#### <sup>180</sup>Hf isomer decay: nuclear collective rotation



Bohr and Mottelson, Phys. Rev. 90 (1953) 717

#### structural changes along the yrast line:

rotation alignment in <sup>160</sup>Dy, deformation alignment in <sup>176</sup>Hf



Johnson et al., Phys. Lett. B34 (1971) 605

Khoo et al., Phys. Rev. Lett. 37 (1976) 823

## <sup>180</sup>Hf prolate $\rightarrow$ oblate



prediction (HFB): Hilton and Mang PRL43 (1979) 1979

## prolate $\rightarrow$ oblate with increasing N

n-rich hafnium ground states (HFB calculations)



Robledo et al., J. Phys. G36, 115104 (2009)

#### total Routhian surfaces (TRS): <sup>182</sup>Hf<sub>110</sub> *Xu, Walker and Wyss, Phys. Rev. C62* (2000) 014301



cf. Hilton and Mang's "giant backbending": PRL43 (1979) 1979





### nuclear chart with >1 MeV isomers



adapted from Walker and Dracoulis, Nature 399 (1999) 35

### K-forbidden γ-ray transitions



degree of forbiddenness,  $v = \Delta K - \lambda$ 

 $\Rightarrow \lambda = 1$  transition is 7-fold K-forbidden (v = 7)

### transition-rate hindrance factors

$$F_W = T_{1/2}^{\gamma} / T_{1/2}^W$$
$$\nu = \Delta K - \lambda$$
$$f_{\nu} = (F_W)^{1/\nu}$$

Weisskopf hindrance

degree of K forbiddenness

reduced hindrance (hindrance per degree of K forbiddenness)

contains the physics

 $f_v \iff$  broken axial symmetry: rotation (Coriolis) non-axial shape ( $\gamma$  deformation) random mixing (level density)

in the initial state and/or in the final state

Walker & Xu, Phys. Scr. 91 (2016) 013010; Walker, Phys. Scr. 92 (2017) 054001 Dracoulis, Walker & Kondev, Rep. Prog. Phys. 79 (2016) 076301



low  $N_p N_n$  values in the N  $\approx$  76 region



Walker and Schiffer, Z. Phys. A338 (1991) 239

low  $N_p N_n$  values in the Z  $\approx$  76 region









Dracoulis et al. Phys. Lett. B720 (2013) 330 (Gammasphere data)



Richter et al., Nucl. Phys. A319 (1979) 221



low  $N_p N_n$  values in the  $Z \approx 76$  region



oblate shape isomer or prolate K isomer?



#### **Summary:**

### n-rich A ≈ 170-190 region

- E2 reduced hindrance &  $N_pN_n$  dependence
- Different angular-momentum orientations: *K isomers*
- Different shapes: oblate→prolate *shape isomers*
- Examples: <sup>192</sup>Os, <sup>188</sup>Pt (<sup>190</sup>Pt)
- Future measurements with mass-separated beams

Special thanks to: Furong Xu (Beijing)



Zsolt Podolyák (Surrey) Filip Kondev (Argonne) George Dracoulis (ANU)