Int. Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" ed. Nikolay Minkov, Heron Press, Sofia 2017

Spin-orbit splitting of neutron states in N=20 isotones within the covariant density functional theory

<u>G.A. Lalazissis</u>¹, K. Karakatsanis¹, P. Ring², E. Litvinova^{3,4}

¹Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
²Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
³Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008, USA
⁴MSU, NSCL, East Lansing, MI 48824, USA

Abstract

Spin-orbit splitting is an essential ingredient for our understanding of the shell structure in nuclei. One of the most important advantages of relativistic mean-field (RMF) models in nuclear physics is the fact that the large spin-orbit (SO) potential emerges automatically from the inclusion of Lorentz-scalar and -vector potentials in the Dirac equation. Here, we investigate the size of 2p and 1f splittings for the isotone chain 40 Ca, 38 Ar, 36 S, and 34 Si using various covariant density functionals. They are compared with the results of non relativistic models and with recent experimental data.