K-ISOMERIC STATES IN HEAVY, WELL-DEFORMED NUCLEI WITHIN A MICROSCOPIC FRAMEWORK

L. Bonneau¹, P. Quentin¹, N. Minkov², D. Ivanova^{3,4}, J. Bartel⁵, H. Molique⁵, Meng Hock Koh⁶

¹CENBG, Bordeaux (France)
 ²INRNE, Sofia (Bulgaria)
 ³University Hospital "Saint Ekaterina", Sofia (Bulgaria)
 ⁴Military Medical Academy, Sofia (Bulgaria)
 ⁵IPHC, Strasbourg (France)
 ⁶UTM, Johor Bahru (Malaysia)

(work supported by PHC RILA 2019 No. 43184NJ)

SDANCA19

3-5 October, 2019

INTRODUCTION

CONTEXT

- *K*-isomerism as a way to probe details of nuclear mean field (single-particle spectra, deformation)
- recent theoretical efforts: DSM approach (N. Minkov et al.), covariant DFT approach (talk by G. Lalazissis)

GOALS

- Assess quality of spectroscopic results from selfconsistent mean-field approaches with pairing in deformed nuclei for quasiparticle-like configurations such as *K*-isomeric states
- Study effects of symmetry breaking at the mean-field level on static properties of K-isomers
 - core polarization (Koopmans vs. selfconsistent blocking)
 - octupole degree of freedom

Outline:

- Description of nuclei in states with finite seniority number¹: mean-field approach with selfconsistent blocking and treatment of pairing correlations
- Application to 2-qp K-isomeric states around A ~ 154 and A ~ 236 without parity breaking
- S Effect of octupole degree of freedom (parity breaking)

¹number of unpaired nucleons

GENERAL FEATURES

- Variational principle applied to BCS-like trial wave functions:
 - For GS of even-even nuclei

$$|\text{BCS}\rangle = \prod_{i>0} (u_i + v_i a_i^{\dagger} a_i^{\dagger}) |0\rangle$$

• Variation with respect to occupation amplitudes v_i and single-particle states $|i\rangle = a_i^{\dagger}|0\rangle$

$$\delta(\langle \text{BCS}|\hat{H} - \lambda_N \hat{N} - \lambda_Z \hat{Z} - \lambda \hat{Q} \cdots | \text{BCS} \rangle) = 0$$

 $\langle BCS|\hat{H}|BCS \rangle = Skyrme energy-density functional (here SIII + seniority residual interaction) <math>\hat{Q} = any$ additional constraint (multipole moments, center of mass

position if parity breaking...)

- Selfconsistent determination of v_i and $|i\rangle$ by iterations
- In practice expansion of s.p. states on axially-deformed HO basis
 ⇒ HF orbitals mix Nilsson quantum numbers

SELFCONSISTENT SYMMETRIES

- axial symmetry (z axis)
- parity symmetry for the study in rare-earth nuclei only

SELFCONSISTENT BLOCKING OF NUCLEONS

Odd-mass, odd-odd or excited even-even nuclei:

- *n* and/or *p* close to Fermi level of underlying even-even core
- occupation equal to 1 for each single-particle state *i* with quantum numbers Ω_i^{π_i} such that ∑Ω_i = K et ∏ π_i = π
- BCS solution with blocked states \Rightarrow pairing quenching
- procedure embedded in the iterative HF process

DEFINITION OF PAIRS OF CONJUGATE STATES

- Case of a time-reversal invariant solution: Kramers degeneracy \Rightarrow pairs of conjugate states $(|i\rangle, |\bar{i}\rangle)$
- Case of a time-reversal breaking solution: pairs of conjugate states (|i⟩, |i⟩) such that

 $\delta \boldsymbol{e}_i = \boldsymbol{e}$

$$\hat{h}_{\mathrm{HF}}|i\rangle = e_i|i\rangle$$
 $\hat{J}_z|i\rangle = \Omega_i|i\rangle$ with $\Omega_i > 0$
 $\hat{h}_{\mathrm{HF}}|\tilde{i}\rangle = e_{\tilde{i}}|\tilde{i}\rangle$ $\hat{J}_z|\tilde{i}\rangle = \Omega_{\tilde{i}}|\tilde{i}\rangle$ with $\Omega_{\tilde{i}} = -\Omega_i < 0$
 $|\langle \bar{i}|\tilde{i}\rangle|$ maximum (close to 1 in practice)

$$e_i = e_{\tilde{i}}$$
 $e_i = |i\rangle$
 $\delta e_i > 0$
 $|\tilde{i}\rangle$

ADJUSTMENT OF RESIDUAL INTERACTION IN BCS

Like-nucleon pairing residual interaction: $\langle i\bar{i}|\hat{V}|\tilde{j}\rangle = \frac{G_0^{(q)}}{11 + N_q}$ q = n or p

Rare-earth region: 2 independent fits of $G_0^{(\tau_i)}$ (Nor et al., PRC99 (2019))

directly on 3-point binding-energy differences centered on odd-A nucleus

$$\Delta_3^{(n)} = \frac{(-1)^N}{2} \Big[E(N+1,Z) + E(N-1,Z) - 2E(N,Z) \Big]$$

on moments of inertia

$$rac{\hbar^2}{2\mathcal{I}_{
m Bel} imes lpha} = rac{1}{6} \, E^*_{
m exp}(2^+_1)$$

where $\alpha = \text{corrective factor for Thouless-Valatin effects}$

 \Rightarrow very close resulting optimal values $G_0^{(n)}=$ 16.20 and $G_0^{(p)}=$ 15.05 note that $G_0^{(p)}/G_0^{(n)}=$ 0.93 consistent with expected Coulomb anti-pairing effect

ADJUSTMENT OF RESIDUAL INTERACTION IN BCS

Like-nucleon pairing residual interaction: $\langle i\bar{i}|\hat{V}|\tilde{j}\rangle = \frac{G_0^{(q)}}{11 + N_q}$ q = n or p**Actinide region:** preliminary calibration of $G_0^{(n)}$ on moment of inertia for a small sample of nuclei, with $G_0^{(p)} = 0.9 \times G_0^{(n)}$ as for rare earths $\Rightarrow G_0^{(n)} = 16, G_0^{(p)} = 14.5$ (slightly smaller than in rare-earth region)

Nucleus	$rac{\hbar^2}{2 \mathcal{I}_{ ext{Bel}} imes lpha}$ (keV)	$rac{1}{6} E^*_{ m exp}(2^+_1)$ (keV)
²³⁴ U	7.41	7.25
²³⁶ U	8.16	7.53
²³⁶ Pu	7.01	7.43
²³⁸ Pu	7.48	7.34

2qp K-isomers in rare-earth nuclei around $A \sim 154$

Example: neutron single-particle spectra of ¹⁵⁴Nd with HF(SIII)+BCS(G)

2qp K-isomers in rare-earth nuclei around $A \sim 154$

Example: neutron single-particle spectra of ¹⁵⁶Gd with HF(SIII)+BCS(G)

2QP K-isomers in rare-earth nuclei around $A \sim 154$

Magnetic diple moment of K = I bandhead (in μ_N unit):

$$\mu = rac{K}{K+1}(g_{R}+\langle\hat{\mu}_{z}
angle) \qquad ext{with } \hat{\mu}_{z} = g_{\ell}\hat{L}_{z} + g_{s}\hat{S}_{z}$$

without empirical attenuation factor for g_s because selfconsistent blocking (SCB) effectively quenches g_s (L. B. et al. PRC91 (2015))

Nucleus	K^{π}	config.	β_2	E _{2qp}	$E^*_{\rm SCB}$	E_{exp}^*	$\langle \hat{\mu}_{Z} \rangle$	g _R	μ
¹⁵⁴ Nd	4-	$\nu(\frac{5}{2}^+,\frac{3}{2}^-)$	0.32	1.681	1.165	1.298	-1.962	0.476	-1.189
¹⁵⁶ Nd	5-	$\nu(\frac{5}{2}^+, \frac{5}{2}^-)$	0.32	1.955	1.447	1.431	-0.117	0.475	0.298
¹⁵⁶ Sm	5^{-}	$\nu(\frac{5}{2}^+, \frac{5}{2}^-)$	0.31	1.929	1.659	1 398	-0.097	0 358	0.217
		$\pi(\frac{5}{2}^+,\frac{5}{2}^-)$	0.32	1.988	1.233	1.000	4.925	0.000	4.402
¹⁵⁶ Gd	7-	$\nu(\frac{11}{2}^{-},\frac{3}{2}^{+})$	0.31	2.642	3.115	2.138	-2.189	0.269	-1.680

 $(Z/A \approx 0.39$ for these nuclei)

- SCB decreases isomer excitation energy E* with respect to E_{2qp}
- Good agreement of SCB calculations with experimental E*
- Exception: ¹⁵⁶Gd

11/15

2 candidate config. found in ¹⁵⁶Sm, distinguished by magnetic moment

2QP K-isomers in rare-earth nuclei around $A \sim 236$

Example: neutron single-particle spectra of ²³⁴U with HF(SIII)+BCS(G)

2QP K-isomers in actinide nuclei around $A \sim 236$

Considered isomers:

Nucleus	K^{π}	config.
²³⁴ U	6-	$\nu(\frac{7}{2}^{-},\frac{5}{2}^{+})$
²³⁶ U	4-	$\nu(\frac{7}{2}^{-},\frac{1}{2}^{+})$
		$\pi(rac{5}{2}^{-},rac{3}{2}^{+})$
²³⁶ Pu	5-	$\pi(\frac{5}{2}^{-},\frac{5}{2}^{+})$
²³⁸ Pu	4-	$\nu(\frac{7}{2}^{-},\frac{1}{2}^{+})$

HF(SIII)+BCS(G) results:

Nucleus	K^{π}	β_2	$E_{\rm SCB}^*$	E_{exp}^*	$\langle \hat{\mu}_Z \rangle$	g _R	μ
²³⁴ U	6-	0.25	1.595	1.421	-0.190	0.303	0.097
²³⁶ U	4 ⁻	0.25	1.067	1.052	3.528	0 322	3.080
	4_p^-	0.25	1.457		-0.239	0.522	0.066
²³⁶ Pu	5-	0.26	1.236	1.185	4.899	0.365	4.387
²³⁸ Pu	4-	0.26	1.071	-	-0.216	0.379	0.130

IMPACT OF OCTUPOLE DEGREE OF FREEDOM ON K-isomers

Case of ²³⁴U

- DSM calculations of *E*_{2qp}(β₂, β₃) suggest octupole deformed 6⁻ isomer (N. Minkov and P. Walker, Phys. Scr. 89 (2014))
- HF(SIII)+BCS(G) calculations: blocked configuration ν(⁵/₂, ⁷/₂) nearest to Fermi level with parity and time-reversal symmetry breaking

Kπ	β_2	β_3	Single-particle $\langle \hat{\pi} \rangle$	$E^*_{\rm SCB}({\sf MeV})$	E_{exp}^{*}	μ	
0+	0.25	0.00	_	0	0	0	
6-	0.25	0.05	$\langle \pi angle (rac{5}{2}) = +0.086$ $\langle \pi angle (rac{7}{2}) = -0.775$	1.481	1 401	-0.081	
	0.25	set to 0		1.595	1.421	0.097	
Multipole deformation parameters β_{ℓ} calculated as $\beta_{\ell} = \frac{4\pi}{3} \frac{\langle r^{\ell} Y_{\ell}^{0} \rangle}{r_{\ell}^{\ell} A^{1+\ell/3}}$ ($r_{0} = 1.2$ fm)							

Very strong parity mixing in the $\Omega=5/2$ blocked state

Parity projection is expected to yield virtually no effect according to, e.g., T.V. Nhan Hao, P. Quentin and L. B., PRC86 (2012)

Conclusions:

- Rather good reproduction of excitation energies of *K*-isomers around *A* ~ 154 and *A* ~ 236 thanks to good spectroscopic properties of SIII and good pairing strength
- Important effect of selfconsistent blocking
- Sizeable effect of octupole deformation in 234 U isomeric state $K^{\pi} = 6^{-1}$

Perspectives:

- Investigate impact of particle-number conservation in pairing treatment on isomer excitation energies
- Extend search for octupole effects on 2qp K-isomers around ¹⁵⁴Nd, ²⁵⁴No and ²⁷⁰Ds
- Apply this approach to *K*-isomers in odd-mass and odd-odd nuclei

BACKUP SLIDES

PHENOMENOLOGICAL EFFECTIVE "INTERACTION"

Skyrme two-body interaction + density-dependent term in momentum space:

$$\begin{split} \widetilde{v}_{Sk}(\mathbf{k}, \mathbf{k}') &= \underbrace{t_0(1 + x_0\hat{P}_{\sigma}) + \frac{t_3}{6}\widetilde{\rho^{\alpha}}(\mathbf{K})(1 + x_3\hat{P}_{\sigma}) + \frac{t_1}{2}(1 + x_1\hat{P}_{\sigma})(\mathbf{k}^2 + \mathbf{k}'^2)}_{{}^{1}S_0 (S=0, T=1) \text{ and } {}^{3}S_1 (S=1, T=0)} \\ &+ \underbrace{t_2(1 + x_2\hat{P}_{\sigma})\mathbf{k}\cdot\mathbf{k}'}_{{}^{1}P_1 (S=T=0) \text{ and } {}^{3}P_J (S=T=1)} + \underbrace{iW(\hat{\sigma}_1 + \hat{\sigma}_2)\cdot(\mathbf{k}\times\mathbf{k}')}_{{}^{3}P_J (S=T=1)} \\ &+ \underbrace{\frac{t_0}{2} \left[3\left((\hat{\sigma}_1 \cdot \mathbf{k})(\hat{\sigma}_2 \cdot \mathbf{k}') + (\hat{\sigma}_1 \cdot \mathbf{k}')(\hat{\sigma}_2 \cdot \mathbf{k})\right) - 2(\hat{\sigma}_1 \cdot \hat{\sigma}_2)\mathbf{k}\cdot\mathbf{k}' \right]}_{{}^{3}P_J (S=T=1)} \\ &+ \underbrace{\frac{t_0}{2} \left[3(\hat{\sigma}_1 \cdot \mathbf{k})(\hat{\sigma}_2 \cdot \mathbf{k}) - (\hat{\sigma}_1 \cdot \hat{\sigma}_2)\mathbf{k}^2 + 3(\hat{\sigma}_1 \cdot \mathbf{k}')(\hat{\sigma}_2 \cdot \mathbf{k}') - (\hat{\sigma}_1 \cdot \hat{\sigma}_2)\mathbf{k}'^2 \right]}_{{}^{3}S_1 - {}^{3}D_1 (S=1, T=0)} \end{split}$$

ENERGY FUNCTIONAL

For a BCS-type product state $|\Psi\rangle$:

$$\boldsymbol{E}[\boldsymbol{\Psi}] = \int d\mathbf{r} \left(\mathcal{H}_{\text{kin}}(\mathbf{r}) + \mathcal{H}_{\text{nucl}}(\mathbf{r}) \right) + \boldsymbol{E}_{\text{Coul}} + \boldsymbol{E}_{\text{pair}}$$

with

$$\begin{aligned} \mathcal{H}_{\text{kin}}(\mathbf{r}) &= \left(1 - \frac{1}{A}\right) \frac{\hbar^2}{2m} \tau \quad (\text{here, 1-body center-of-mass correction only}) \\ \mathcal{H}_{\text{nucl}}(\mathbf{r}) &= \left(B_1 + B_7 \rho^{\alpha}\right) \rho^2 + \left(B_{10} + B_{12} \rho^{\alpha}\right) \mathbf{s}^2 + B_3 \left(\rho \tau - \mathbf{j}^2\right) + B_5 \rho \Delta \rho \quad (\text{central}) \\ &+ B_{14} \left(\overleftarrow{\mathbf{j}}^2 - \mathbf{s} \cdot \mathbf{T}\right) + B_{18} \mathbf{s} \cdot \Delta \mathbf{s} \quad (\text{central + tensor}) \\ &+ B_{16} \left[\left(\text{Tr } \mathbf{J}\right)^2 + \sum_{\mu,\nu} \mathbf{J}_{\mu\nu} \mathbf{J}_{\nu\mu} - 2 \, \mathbf{s} \cdot \mathbf{F} \right] + B_{20} \left(\nabla \cdot \mathbf{s} \right)^2 \quad (\text{tensor}) \\ &+ B_9 \left(\rho \nabla \cdot \mathbf{J} + \mathbf{j} \cdot \nabla \times \mathbf{s} \right) \quad (\text{spin-orbit}) \\ &+ \sum_q \text{ corresponding terms for the charge state } q \text{ alone} \\ E_{\text{Coul}} &= E_{\text{Coul}}^{(dir)} \left(\text{exact} \right) + E_{\text{Coul}}^{(exch)} \left(\text{Slater approximation} \right) \\ E_{\text{pair}} \quad \text{calculated in BCS with a seniority force} \end{aligned}$$

HARTREE-FOCK HAMILTONIAN

$$\langle \mathbf{r} | \hat{h}_{\mathrm{HF}}^{(q)} | \phi_k \rangle = - \nabla \cdot \left(\frac{\hbar^2}{2m_q^*(\mathbf{r})} \nabla [\phi_k](\mathbf{r}) \right) + \left(U_q(\mathbf{r}) + \delta_{q\,\rho} V_{\mathrm{Coul}}(\mathbf{r}) \right) [\phi_k](\mathbf{r})$$

$$+ i \mathbf{W}_q(\mathbf{r}) \cdot \left(\boldsymbol{\sigma} \times \nabla [\phi_k](\mathbf{r}) \right)$$

$$- i \sum_{\mu,\nu} \left\{ \left(W_{q,\mu\nu}^{(J)}(\mathbf{r}) \sigma_{\nu} \nabla_{\mu} [\phi_k](\mathbf{r}) \right) + \nabla_{\mu} \left(W_{q,\mu\nu}^{(J)}(\mathbf{r}) \sigma_{\nu} [\phi_k](\mathbf{r}) \right) \right\}$$

$$from 1 - terms induced by control + tensor$$

from $J_{\mu\nu}$ terms induced by central + tensor

+ $\mathbf{S}_{q}(\mathbf{r}) \cdot \boldsymbol{\sigma}[\phi_{k}](\mathbf{r})$ - $\frac{i}{2} \left\{ \mathbf{A}_{q}(\mathbf{r}) \cdot \boldsymbol{\nabla}[\phi_{k}](\mathbf{r}) + \boldsymbol{\nabla} \cdot \left(\mathbf{A}_{q}(\mathbf{r})[\phi_{k}](\mathbf{r}) \right) \right\}$

+spin-gradient couplings from central + tensor

whith the spin field $\mathbf{S}_q(\mathbf{r})$

$$\mathbf{S}_{q}(\mathbf{r}) = \boxed{2(B_{10} + B_{12} \rho^{\alpha})\mathbf{s} + 2(B_{11} + B_{13} \rho^{\alpha})\mathbf{s}_{q} - (B_{14} \mathbf{T} + B_{15} \mathbf{T}_{q})}{-B_{9} \mathbf{\nabla} \times (\mathbf{j} + \mathbf{j}_{q}) + \text{terms deriving from central + tensor}}$$