Nuclear structure effects involving pear-shape deformation

Nikolay Minkov

Institute of Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences, Sofia, Bulgaria **Research Group on Complex Deformed Atomic Nuclei**

SDANCA-19, Sofia, 4 October 2019

Contents

- **1** Quadrupole-octupole shapes and spectra
- 2 Collective guadrupole-octupole model: even-even nuclei Quadrupole-octupole rotation model (QORM)
 - Model of Coherent guadrupole-octupole motion (CQOM)
- **3** Search for pear-shape effects in less studied regions: 130-136Nd
- CQOM core plus particle model: odd-mass nuclei
- **5** Spectrum and EM transitions in ²²⁹Th
 - Quasi-parity-doublet spectrum of ²²⁹Th
 - Predicted B(E2) and B(M1) values for $3/2^+ \gamma$ -decay
- 6 Magnetic dipole moments in ²²⁹Th
 - Remarks

Shell model origin of octupole deformation

Coupling of orbitals with different parity and $(\Delta l = 3)$ near the Fermi level $\rightarrow (N, I, j) \otimes$ (N-1, I-3, i-3)

 \Rightarrow Particle numbers favouring strong octupole correlations:

34 $(g_{\frac{9}{2}} \otimes p_{\frac{3}{2}})$ **56** $(h_{\frac{11}{2}} \otimes d_{\frac{5}{2}})$ **88** $(i_{\frac{13}{2}} \otimes f_{\frac{7}{2}})$ **134** $(j_{\frac{15}{2}} \otimes g_{\frac{9}{2}})$ \Rightarrow regions of pronounced octupole deformations/collectivity: ¹⁴⁴Ba (Z = 56, N = 88) \Rightarrow Xe (Z=54) – Ba (Z=56) – Ce (Z=58) ²²²Ra (Z = 88, N = 134) \Rightarrow Rn (Z=86) – Ra (Z=88) – Th (Z=90)

Alternating-parity bands (APBs) at stable octupole mode

Recent confirmations of GS octupole deformation: ²²⁴Ra – L. Gaffney et al, Nature **497**, 199 (2013); P. Butler, JPG **43**, 073002 (2016) ^{144,146}Ba – B. Bucher et al, PRL **116**, 112503 (2016); PRL **118**, 152504 (2017) New data expected: ¹⁴²Ba, ^{222,224,226}Rn and ^{222,228}Ra – P. Butler, L. Gaffney et al – HIE-ISOLDE ¹⁴⁰Ba – T. Mertzimekis et al – IFIN-HH

Fine staggering effects in octupole bands

Alternating-parity bands in ¹⁵²Sm and ¹⁵⁴Gd

soft quadrupole-octupole mode

Split parity-doublet bands in ²²³Ra and ²²³Th (data from ENSDF)

Quadrupole-octupole rotation model (QORM)

Model of octupole vibrations and quadrupole-octupole rotations [N. Minkov, S. Drenska, P. Yotov and W. Scheid, JPG 32, 497(2006)]

Quadrupole-octupole rotation model (QORM)

Energy and parity shift from double-well potential

 \Rightarrow Low-spin parity shift effect

Quadrupole-octupole rotation model (QORM)

Quadrupole-octupole rotation Hamiltonian. Octahedron symmetry

$$\hat{H}_{qorm} = \hat{H}_{quad} + \hat{H}_{oct} + \hat{H}_{qoc}$$
$$\hat{H}_{oct} = \hat{H}_{A_2} + \sum_{r=1}^{2} \sum_{i=1}^{3} \hat{H}_{F_r(i)}$$

Point-symmetry contents: $\hat{H}_{F_1(1)} \rightarrow Y_{30} \rightarrow \mathsf{D}_{\infty}$; $\hat{H}_{F_1(2)} \rightarrow (Y_{31} - Y_{3-1}) \rightarrow \mathsf{C}_{2\nu}$; $\hat{H}_{F_2(1)} \rightarrow (Y_{32} + Y_{3-2}) \rightarrow \mathsf{T}_d; \ \hat{H}_{F_2(2)} \rightarrow (Y_{33} - Y_{3-3}) \rightarrow \mathsf{D}_{3h}$ [Octahedron irreps]

$$\begin{array}{lll} {\cal E}_{{\cal K}}^{\rm qorm}(I) & = & {\cal A}I(I+1) + {\cal A}'{\cal K}^2 + (1/2)f_{11}\left[5{\cal K}^3 - 3{\cal K}I(I+1)\right] \\ & + & f_{\rm qoc}(1/I^2)\left[15{\cal K}^5 - 14{\cal K}^3I(I+1) + 3{\cal K}I^2(I+1)^2\right] \end{array}$$

 $K_{\min} \rightarrow \text{high-spin}$ "beat" staggering effect [N. M. et al, PRC 63, 044305 (2001)]

Quadrupole-octupole rotation model (QORM)

$E_{coll} = E_{wib}^{oct} + E_{aorm}$. "Beat" staggering patterns in R<u>a and Th nuclei.</u>

[N. Minkov, P. Yotov, S. Drenska and W. Scheid, JPG 32, 497 (2006)]

Model of Coherent quadrupole-octupole motion (CQOM)

Model of Coherent quadrupole-octupole motion (CQOM)

$$H_{qo} = -\frac{\hbar^2}{2B_2}\frac{\partial^2}{\partial\beta_2^2} - \frac{\hbar^2}{2B_3}\frac{\partial^2}{\partial\beta_3^2} + U(\beta_2, \beta_3, I)$$

$$U(\beta_2,\beta_3,I) = \frac{1}{2}C_2\beta_2^2 + \frac{1}{2}C_3\beta_3^2 + \frac{1}{2}\frac{d_0+I(I+1)}{d_2\beta_2^2 + d_3\beta_3^2}$$

 $\beta_2 = \sqrt{d/d_2}\eta \cos\phi , \quad \beta_3 = \sqrt{d/d_3}\eta \sin\phi , \quad d = (d_2 + d_3)/2$ coherent quad-oct mode: $\omega = \sqrt{C_2/B_2} = \sqrt{C_3/B_3} \equiv \sqrt{C/B}$

[N. M. et al, Phys. Rev. C 73, 044315 (2006); 85 034306 (2012)]

Model of Coherent quadrupole-octupole motion (CQOM)

Quad.-oct. potential of a coherent mode $\omega = \sqrt{C_2/B_2} = \sqrt{C_3/B_3}$

Model of Coherent quadrupole-octupole motion (CQOM)

Theoretical and experimental alternating-parity bands in ¹⁵⁰Nd, ¹⁵²Sm, ¹⁵⁴Gd and ¹⁵⁶Dy

[Phys. Rev. C 73, 044315 (2006)]

^{130–136}Nd: Experimental alternating parity bands (APBs) up to l = 14. Data from ENSDF.

QORM and CQOM descriptions of ¹³⁶Nd APB. Data from ENSDF. Communication C. Petrache.

Experimental and theoretical staggering patterns for ¹³⁶Nd APB

QORM and CQOM descriptions of ¹³⁴Nd APB. Data from ENSDF.

QORM and CQOM descriptions of ¹³²Nd APB. Data from ENSDF.

QORM and CQOM descriptions of ¹³⁰Nd APB. Data from ENSDF.

Experimental staggering pattern for ¹³⁴Nd APB up to I=30

Model interpretation of ^{130–136}Nd APB data

 $^{136}Nd \rightarrow$ possible stabilization of the pear-shape deformation, quadrupole-octupole (QO) rotation mode

 $^{130,132}Nd \rightarrow soft QO rotation-vibration mode$

 134 Nd \rightarrow possible transition between stable QO rotations and soft rotation-vibration motions

Nd isotopes \rightarrow Z=60 > (+4) Z=56 octupole "magic number" $^{130-136}$ Nd \rightarrow N= 70,...,76 < (-18, ..., -12) N=88 "mag"

 \Rightarrow **Riddle:** If our analysis is correct, what is the reason for the enhanced octupole deformation mode around Z=60, N=76?

 \rightarrow Needs for a deep microscopic analysis of the underlying octupole correlations in a deformed shell framework.

Quadrupole-octupole core plus particle Hamiltonian

$$\begin{split} H &= H_{qo} + H_{s.p.} + H_{pair} + H_{Coriol} \\ H_{qo} &= -\frac{\hbar^2}{2B_2} \frac{\partial^2}{\partial \beta_2^2} - \frac{\hbar^2}{2B_3} \frac{\partial^2}{\partial \beta_3^2} + U(\beta_2, \beta_3, I) \\ U(\beta_2, \beta_3, I) &= \frac{1}{2} C_2 \beta_2^2 + \frac{1}{2} C_3 \beta_3^2 + \frac{d_0 + \hat{I}^2 - \hat{I_z}^2}{2\mathcal{J}(\beta_2, \beta_3)} \\ H_{Coriol} &= -\frac{(\hat{I}_+ \hat{J}_- + \hat{I}_- \hat{J}_+)}{2\mathcal{J}(\beta_2, \beta_3)}, \quad \mathcal{J}(\beta_2, \beta_3) = (d_2 \beta_2^2 + d_3 \beta_3^2) \\ H_{sp} &= T + V_{ws}(\beta_2, \beta_3, ...) + V_{s.o.} + V_c \\ H_{qp} &\equiv H_{s.p.} + H_{pair} \rightarrow \epsilon_{qp}^K = \sqrt{(E_{sp}^K - \lambda)^2 + \Delta^2} \end{split}$$

Quasi-parity-doublet spectrum of ²²⁹Th

Theoretical and experimental quasi parity-doublet spectrum of ²²⁹Th

DSM: s.p. orbitals GS(5/2[633]), IS(3/2[631]); $\beta_2 = 0.240$, $\beta_3 = 0.115$ BCS: $g_0 = 18.8$, $g_1 = 7.4$ CQOM: $\omega = 0.06 \text{ MeV}/\hbar$, $b = 4.5 \hbar^{-2}$, $d_0 = 45 \hbar^2$, c = 320, p = 1Coriol: A = 0.144 keV

Predicted B(E2) and B(M1) values for $3/2^+ \gamma$ -decay

Theoretical B(E2) and B(M1) transition values for 229 Th at different parameter sets

ω	Ь	d_0	с	р	Α	$k_{yr}^{(-)}$	$k_{ex}^{(-)}$	rmsyr	rms _{ex}	rms _{tot}	$E_{\text{ex}}(\frac{3}{2}^+)$	B(E2)	B(M1)
0.2039	0.28	18	79	1.0	0.158	2	2	39.9	26.0	34	0.4263	27.04	0.0076
0.2361	0.28	33	89	1.0	0.141	2	2	41.2	26.4	35	0.0078	23.05	0.0061
0.0912	2.39	49	245	1.0	0.152	4	6	37.6	15.8	29	0.3556	25.80	0.0071
0.0635	4.51	45	321	1.0	0.144	6	8	36.4	12.4	28	0.0725	22.86	0.0063

 \Rightarrow transition probabilities for the 3/2⁺-isomer decay in ^{229}Th expected in the limits:

B(E2)=20-30 W.u. ⇒ $\tau \sim 10^{13}s$ B(M1)=0.006-0.008 W.u. ⇒ $\tau \sim 10^4s = 2.8h$

N. M. and A. Pálffy, Phys. Rev. Lett. **118**, 212501 (2017) P. Bilous, N.M. and A. Pálffy, PRC **97**, 044320 (2018) [predictions for M1 and E2 internal conversion rates]

Magnetic moment in a s.p./q.p. state with $K = K_{bh}$

$$\hat{M}1 = \sqrt{\frac{3}{4\pi}} \mu_N[g_R(\hat{l} - \hat{j}) + g_s \,\hat{s} + g_l \,\hat{l}], \quad \hat{j} = \hat{l} + \hat{s}, \quad \mu_N = \frac{e\hbar}{2mc}$$

$$\mu = \sqrt{rac{4\pi}{3}} \langle \widetilde{\Psi}_{IIK_b} | \hat{M} \mathbb{1}_z | \widetilde{\Psi}_{IIK_b}
angle$$

 $g_s = q_s \cdot g_s^{free}$ spin gyromagnetic quenching (core polarization effect): $q_s = 0.6$

 $g_R = q_R \cdot Z/A$ collective gyromagnetic quenching (pairing effect): $q_R=1.0$, **0.8** (from exp. M1/E2), **0.7** (Nilsson), **0.6** (HF+BCS)

Magnetic moments (in μ_N) in the $3/2^+_{IS}$ and $5/2^+_{GS}$ states of ²²⁹Th

N. Minkov and A. Pálffy, Phys. Rev. Lett., 122, 162502 (2019).

μ -		q_R (ou	r work)		other	theories	laser spectroscopy				
	1.0	0.8	0.7	0.6	Th77	Th98	Exp74	Exp13	Exp18a	Exp18b	
μ_{GS}	0.654	0.591	0.559	0.528	0.54	-	0.46(4)	0.360(7)	-	-	
$\mu_{\rm IS}$	-0.253	-0.300	-0.323	-0.347	-	-0.076			(-0.3)- (-0.4)	-0.37(6)	

Th77: Modified Woods-Saxon Model, R. Chasman et al, Rev. Mod. Phys. **49**, 833 (1977)

Th98: Nilsson Model, A. Dykhne and E. Tkalya, JETP Lett. **67**, 251 (1998)

Exp74: S. Gerstenkorn et al., J. Phys. (Paris) 35, 483 (1974)
Exp13: M. Safronova et al, Phys. Rev. A 88, 060501(R) (2013)
Exp18a: R. Müller et al., Phys. Rev. A 98, 020503(R) (2018)
Exp18b: J. Thielking,..., P.Thirolf, E.Peik, Nature 556, 321 (2018)

Magnetic moment (in μ_N) in the $3/2_{1S}^+$ state of ²²⁹Th

Predicted B(M1) values (in W.u.) for ²²⁹Th in dependence of q_R

Decay		Evporimont			
Decay	1.0	0.8	0.7	0.6	Experiment
$\frac{3}{2}^+_{ex} \rightarrow \frac{5}{2}^+_{yr}$	0.0081	0.0068	0.0062	0.0056	-
$\frac{7}{2}^+_{\rm yr} \rightarrow \frac{5}{2}^+_{\rm yr}$	0.0096	0.0043	0.0025	0.0011	0.0110 (40)
$\frac{9^{+}}{2}$ yr $\rightarrow \frac{7^{+}}{2}$ yr	0.0185	0.0097	0.0065	0.0038	0.0076 (12)
$\frac{9}{2}$ yr $\rightarrow \frac{7}{2}$ ex	0.0144	0.0147	0.0149	0.0151	0.0117 (14)

N. Minkov and A. Pálffy, Phys. Rev. Lett. 122, 162502 (2019)

Predicted B(M1) values (in W.u.) for ²²⁹Th in dependence of q_R

 $\Rightarrow \mu_{GS}, \mu_{IS}$ constraints in the determination of isomer decay rates

Concluding remarks

- Model: CQOM+DSM+BCS with Coriolis mixing description of K-suppressed EM transitions at axial symmetry
- ²²⁹Th spectrum: \rightarrow guadrupole-octupole-shape driven guasi parity-doublet structure built on 5/2[633], 3/2[631] qp states
- 7.8 eV $3/2^+$ isomer interpretation: a bandhead of an excited quasi parity-doublet, built on 3/2[631] q.p. state coupled to a collective quadrupole-octupole vibration mode and rotation motion - very fine interplay between all these modes
- Predictions for: B(E2) and B(M1) isomer decay probabilities; Magnetic dipole moment \Rightarrow surprisingly good reproduction of $\mu_{\rm IS}^{\rm exp}$, further constraint on model conditions [$\mu_{\rm GS}^{\rm exp}$]
- Perspective: Possibility for a highly precise determination of ^{229m}Th decay rates and life-time \Rightarrow input into the efforts for achieving Nuclear Clock frequency standard.