Optical spectroscopy - probing the size, shape and single-particle properties of exotic nuclei

Jain Moore

Department of Physics, University of Jyväskylä, Finland

Outline

- What is optical spectroscopy?
- What can it tell us about nuclear structure?
- Shape coexistence in the A=100 region
- New charge radii results for Ag, Pd
- Summary

High resolution collinear laser spectroscopy

- Extract hyperfine factors A and B from fitting the peak positions:

$$A = \frac{\mu_I B_{\rm e}(0)}{IJ}$$

$$B = e Q_{\rm s} \left\langle \frac{\partial^2 V_{\rm e}}{\partial z^2} \right\rangle$$

Magnetic dipole interaction

Electric quadrupole interaction

A measurement of nuclear spin

Recent example: ¹⁰⁷Mo

- Tentatively assigned (5/2⁺) in ENSDF
- *Recent decay spectroscopy indicates a spin 1/2
 - *J. Kurpeta et al., Phys. Rev. C, accepted 23 Aug. 2019

Magnetic moments and nuclear structure

- Looking at systematics, a sudden change of nuclear spin is reflected in the magnetic dipole moment these parameters are importantly coupled
- Nuclear moments provide an exceptionally sensitive probe of the nuclear wave function and the different orbitals involved during the onset of collectivity (deformation)
- For example, suggestions of collectivity towards N=40 in Cr, Fe; test via optical spectroscopy in

C. Babcock, H. Heylen et al., Phys. Lett. B 715 (2015) 176

Magnetic moments and nuclear structure

- Extend the model space to include higher neutron orbitals (excitations indeed take place long before *N* = 40)
- Similarly, one can do the same probing using electric quadrupole moments!

C. Babcock, H. Heylen et al., Phys. Lett. B 760 (2016) 387

Isotopic shifts of electronic transitions

I.D. Moore, SDANCA-2019, 3-5 October, Sofia, Bulgaria

The quest for shape coexistence in Zr isotopes

``...we emphasize the importance of both electromagnetic properties, isotopic shifts, S_{2n} separation energies as well as data on two-nucleon transfer reactions..."

Talk by A. Leviatan (Quantum phase transitions)

I.D. Moore, SDANCA-2019, 3-5 October, Sofia, Bulgaria

UNIVERSITY OF JYVÄSKYLÄ

Deformation from the quadrupole moment

Compare estimates from quadrupole moments with results from charge radii.

Shape coexistence in ⁹⁸Y

PHYSICAL REVIEW C 96, 044333 (2017)

Shape coexistence in the odd-odd nucleus ⁹⁸Y: The role of the $g_{9/2}$ neutron extruder

W. Urban,¹ M. Czerwiński,¹ J. Kurpeta,¹ T. Rząca-Urban,¹ J. Wiśniewski,¹ T. Materna,² Ł. W. Iskra,³ A. G. Smith,⁴ I. Ahmad,⁵ A. Blanc,⁶ H. Faust,⁶ U. Köster,⁶ M. Jentschel,⁶ P. Mutti,⁶ T. Soldner,⁶ G. S. Simpson,⁷ J. A. Pinston,⁷ G. de France,⁸ C. A. Ur,⁹ V.-V. Elomaa,¹⁰ T. Eronen,¹⁰ J. Hakala,¹⁰ A. Jokinen,¹⁰ A. Kankainen,¹⁰ I. D. Moore,¹⁰ J. Rissanen,¹⁰ A. Saastamoinen,¹⁰ J. Szerypo,¹⁰ C. Weber,¹⁰ and J. Äystö¹⁰

Use a different ionic transition (J = $2 \rightarrow J' = 1$)

- New optical data obtained in 2019 indicates a nuclear spin of (7,8) for ^{98m}Y
- Preliminary results: $Q_s = +3.05(33)$ b and $\mu = +2.62(2) \mu_N$
- The isomer has a much larger quadrupole moment with strong prolate deformation which is very rigid

Charge radii near the Sn region

New results from IGISOL (2018-2019)

Collinear laser spectroscopy performed on neutron-rich Ag and Pd fission fragments; In-source laser spectroscopy performed on neutron-deficient Ag (to ⁹⁶Ag)

Summary & outlook

- Laser spectroscopy is a powerful tool which provides access to fundamental ground (and isomeric) state nuclear structure, complementary to other methods but importantly free from model dependencies
- Extract nuclear spins, magnetic properties (single-particle), electric properties (collective), charge radii, nuclear state identification
 Testing theoretical models (shell model, density functional approaches, ab-initio....)
- Array of techniques, traditionally either high resolution OR highly sensitive (collinear, in-source laser resonance ionization)
- CRIS, in-gas-jet spectroscopy are aimed at combining these two properties
- Novel methods of production, ion/atom & optical manipulation required to access more challenging elements
- Future facilities (SPIRAL2, FAIR, FRIB....)

hank you

P. Campbell

B. Cheal, C. Devlin

UNIVERSITY OF JYVÄSKYLÄ

MANCHESTER

R. De Groote, M. Reponen, I. Pohjalainen, ins, S. Geldhof and the IGISOL team

https://www.jyu.fi/igisol