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INTRODUCTION

Evidence for an energy gap in the
intrinsic excitation spectrum of nuclei

a) Comparison of  first excited states
in odd-odd and even-A nuclei

b) Moments of inertia  appreciably
smaller than rigid body values

c) Odd-even mass differences  



  

Here we investigate the  point b) : 
Effect of pairing correlations on moments of inerti a (M.o.I.)
in two directions

1) as a collective coupling  between pairing correlations 
and the global rotation mode

2) in connexion with the point c) related to odd-even-even 
mass differences

Both can be currently tackled quantitatively  within
a systematic study  in particular within HFB or HF+BCS 
using phenomelogical effective N-N interactions

Limiting to well-deformed nuclei : obviously for M.o.I. and
also to avoid large range collective fluctuations a s well as
to minimize energy effects of short range collectiv e 
correlations (both not taken into account here)



  

1)       COLLECTIVE COUPLING BETWEEN
PAIRING AND GLOBAL ROTATION MODES
(J. Bartel, P.Q.)
After Bohr, Mottelson and Pines (1958), Migdal (195 9) 
Griffin and Rich (1960) and Belyaev (1961) have mad e 
theoretical investigations of the effect of pairing  on M.o.I.
Mottelson and Valatin (1960) have made a fruitful p arallel

Analogy : Lorentz force and Coriolis pseudo-force

Coriolis anti-pairing  (CAP) effect (~ type I superconductor) 
collective  gradual alignment within Cooper pairs
 

F⃗ L = q (v⃗ X B⃗)     and    F⃗ C = 2m (v⃗ X Ω⃗)



  

Other pairing-rotation couplings occur 
but are not of a collective nature as :
single pair breaking         qp alignment          backbending
Here we focus on the CAP phenomenon 
for even-even nuclei

It has been shown that the effect of pairing correl ations 
on global rotation is well described in terms of
a coupling à la Chandrasekhar (type-S ellipsoids)
between rotational currents and those issued from 
a linear divergence-free intrinsic vortical current  field
(counter-rotating  with respect to the global rotation)
See H.Lafchiev et al., Phys. Rev. C 67, 054315 (2003)
       P. Quentin et al. Phys. Rev. C 69, 014307 (2004)

Equivalence of rotational properties  between 
Routhian HFB and 
Routhian HF under constraint on the Kelvin circulat ion 
operator 

→

K̂
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H.Lafchiev et al., Phys. Rev. C 67, 054315 (2003)

The Lagrange parameter  (intrinsic angular velocity)
associated with     in the constrained HF Routhian

has been phenomenologically linked to      as follo ws

ω
K̂

δ ( Ĥ − Ω Ĵ x − ω K̂ x  ) = 0

Ω

       constrained
to its HFB value 
〈 K x〉
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The critical angular velocity            corresponds to the 

  

ω =− k Ω[1 − ( Ω
Ωc

)
2

]    with  k > 0 (ω ,Ω > 0)

Ω ↑ → increasing counter rotation → (− ω) ↑

But Ω ↑ → decreasing pairing → (− ω) ↓
Consequently ∣ ω ∣  reaches a maximum and decreases to 0
at the critical angular velocity for pairing disappearance Ωc

ℏΩ   (MeV)

HF+V

HF

ω(Ω)

Exp

disappearance of pairing 
correlations

(It depends a priori 
on the ground state intensity 
of pairing correlations)

The coupling strength      has
to be determined

Ωc

k



  

Aim : Find an analytical form for a Harris type M.o.I.
up to third order        terms in             from 

The inertia parameters                  have been calculated 
semiclassically within a Wigner-Kirkwood approximat ion 
up to      terms with
They depend on the intrinsic deformation     (assum ing an 
equivalent ellipsoidal shape)

Three quantities have to be introduced  per nuclei to define

They are not fitted  for each nucleus, they depend 
on zero or low E* experimental data
Question : how well these low E* inputs are able to 
reproduce higher spin energies  whenever the CAP is valid

Ω2

E(Ω) = 1 /2 [ A ω(Ω)2 + 2 B ω(Ω) Ω + C Ω2 ]  thus 
E(Ω) = 1 /2 Ω2 [C − 2 B k(1 − ξ2) + A k2(1 − ξ2)2 ]  with ξ = Ω/Ωc

(A,B ,C)

ℏ
2

ββ

Ωc , k , β

E(Ω)

B ⩽ A⩽ C



  

The critical value       is determined by equating 
the zero pairing rotational energy with
some estimate of a relevant pairing energy at zero spin

The strength parameter     is obtained in the lowest      limit
by linearizing            (i.e. from the first     energy)

The deformation     is obtained from                            dat a 

Ωc

1
2

J R Ωc
2 = E pair  with Epair = E0

Q0
pair

Qpair

Q pair = √∆n(N , Z)2 + ∆ p(N , Z)2

 where ∆n(N , Z) =
1
2
(δn

(3)(N− 1, Z) + δn
(3)(N+1,Z)) (N  even)

with δn
(3)(N , Z) =

(− 1)N

2
[ Sn(N , Z)− Sn(N+1, Z)]

and similarly for ∆ p(N , Z)

k Ω
ω(Ω) 2+

B(E2 ;0+
→ 2+)β



  

ℏΩ =
dE(Ω)

d Ĩ
 with Ĩ = √I ( I + 1)

The angular velocity       associated to a spin value 
is determined from the Lagrange parameter equation

That is inverting the monotonic function

We compare for a sample of well-deformed 
even-even and actinide well-deformed nuclei
experimental data and model results and shall prese nt

- Ground band state energies     as functions of 

- Kinematical M.o.I.         as functions of

The rotational indicator                       is a lso reported 

Ω I

Ĩ (Ω) =∫ 0

Ω 1
ℏΩ '

dE(Ω ' )
d Ω '

dΩ '

IE

J (1)
(ℏΩ)2

R42 =
E(4+)

E(2+)



  

Backbending !

E(Ωexp( I ))

Our model

E( I )

Rare Earth
Region



  

E( I )

Actinide
Region



  

Backbending is clearly beyond the scope 
of our CAP model ! 

J (1)(Ω)
Rare Earth
Region



  

J (1)(Ω) Actinide
region

Straight line:       terms
Beyond:               terms  

Ω4

Ω6



  

2)       CONSISTENCY OF A FIT OF 
A SIMPLE PAIRING RESIDUAL INTERACTION 
FROM TWO INDEPENDENT POINTS OF WIEV
(Koh Meng-Hock, L. Bonneau , P.Q.)
Nurhafiza M. Nor et al., Phys. Rev C 99 (2019) 064306

Bohr, Mottelson and Pines have mentioned in particu lar
two consequences of the existence of pairing

1) Moments of inertia  appreciably
smaller than rigid body values

2) Odd-even mass differences  

We have computed both  in a relevant sample of 
well deformed rare earth nuclei within the framewor k of
Hartree-Fock + (self-consistent blocking) BCS calcu lations



  

We use the well-seasoned SIII Skyrme interaction
for the particle-hole channel
and a particle-number dependent seniority interaction
for the particle-paticle hole-hole channels

Two quantities to be fitted 

Our sample includes 24 even-even rare earth nuclei 
( most of our even-even selected nuclei fulfill                  )

together with 17 odd-neutron and 14 odd-proton 
neighbouring nuclei

∀ | i > , | j > ∈  { canonical basis } 〈 i ī |vresidual
antisym.| j j̄ 〉 = δqi ,q j

Gqi

11 + Nqi

Gq  with q standing for n and p

R42 ⩾ 3.3

156,158,160 Sm 160,162,164 ,166Gd 162,164 ,166,168 Dy 168,170,172 Er
170,172,174 ,176,178Yb 176,178,180,182 Hf 180 W



  

Calculated

Experimental

K π

I π

Sample of odd-A nuclei

Ground state spins and parities 
reasonably well reproduced 
(agreement - when only one entry shown - for ~ 77% cases) 



  

Fit on M.o.I.

Calculated with the Inglis-Belyaev formula 
plus approximate Thouless-Valatin correction  *  
(* including the T-odd density response 
to the T-odd part of the HF+BCS Routhian)

2D Mesh in the                  plane   
Minimal r.m.s. deviation by a cubic regression appr oach

(Gn ,G p)

Gn = 16.27  MeV    and    Gp = 15.26  MeV

√〈 (J calc.
− J exp.)2

〉 ≈ 1.7ℏ 2 MeV− 1    for J ≈ 40ℏ 2 MeV− 1



  

Fit on Odd-Even mass differences

Here two quantities to be fitted         
by two parameters

Actually the two fits (on neutrons and protons)
are rather well decoupled  

Yet we have searched for a minimal r.m.s. deviation  by a 
cubic regression approach for a quantity 
where the squared deviation for n and p
have been simply added

Agreement between the two fits : 1% for n, 3% for p

(∆n
(3) ,∆ p

(3))

Gn = 16.10 (16.27)  MeV    and    G p = 14.84 (15.26)  MeV

√〈 (∆n
(3)calc.

− ∆n
(3)exp.)2

〉 ≈ 90 keV

√〈 (∆ p
(3)calc.

− ∆ p
(3)exp.)2

〉 ≈ 180 keV

(Gn ,G p)



  

CONCLUSIONS
1) The physical assumptions  that the M.o.I. decrease from 
the rigid body value and the odd-even mass differen ces 
stem from pairing correlations are documented here
Not much of a surprise but an illustration  …

2) Our rather crude way to handle it  (e.g. BCS, seniority 
force, approximate Thouless-Valatin corrections …)
seems sufficient  to describe these physical effects

3) Our choices of relevant samples  seem appropriate

4) The description of the Coriolis Anti-Pairing  is very well 
described within the Chandrasekhar's S - ellipsoids frame  
up to spins where another physical effect switches on
A clean-cut confirmation of the collective modes at  work

5) The 44 years old SIII force  not so bad for spectroscopy ...


