Correlations beyond mean field based on covariant density functional theory

Sofia, Oct. 3, 2019

Peter Ring

Technical University Munich Excellence Cluster "Origins" Peking University

Correlations ?

- all effects going beyond independent particle motion
- Configuration mixing
- Pauli correlations: Slater determinants
- mean field theory: correlations by symmetry breaking
- short range correlations:

Jastrow factors, correlators: $|\psi\rangle = e^{C} |\Phi\rangle$

Brueckner theory

renormalized effective force (V_low-k, SRG ...)

 Correlations beyond mean field: mixing of Slater determinants

Content:

Applications of CDFT beyond mean field:

- Generator Coordinate Method (GCM)
- α-clustering in light nuclei
- Collective Hamiltonian (5DCH)
- benchmark calculations (full GCM \leftrightarrow 5DCH)
- Configuration Interaction Projected DFT (CI-PDFT)
- Neutrino-less double beta decay
- Complex Configurations in time-dependent mean field theory
- particle-vibrational coupling

Conclusions and outlook

Density functional theory is a mapping of the complicated many-body problem \rightarrow to a simple one-body problem which preserves the local density ρ (r) and therefore the energy E(ρ), and quantities depending on ρ (r), e.g. rms-radii

Starting point: $E = E[\rho]$

Mean field: $h = \frac{\delta E[\rho]}{\delta \rho}$

Interaction:
$$V = \frac{\delta^2 E[\rho]}{\delta \rho^2}$$

DFT has many advantages:

- universal
- provides an easy understanding (e.g. deformation)
- technically simple

DFT fails in many respects:

- no spectroscopic properties
- low level density at Fermi surface
- no shape coexistence
- no width of giant resonances

•....

DFT is phenomenological

This model has only four parameters:

 $S(r) = g_{\sigma}\sigma(r) \quad V(r) = g_{\omega}\omega(r) + g_{\rho}\rho(r) + eA(r)$

Effective density dependence:

The basic idea comes from ab initio calculations density dependencd includes Brueckner correlations and threebody forces

a) non-linear meson couplings: NL3, FSU, PK1

b) density dependent couplings: **DD-ME1, DD-ME2, DD-MEδ**

adjusted to ground state properties of finite nuclei

 Typel, Wolter, NPA 656, 331 (1999)

 Niksic, Vretenar, Finelli, P.R., PRC 66, 024306 (2002):

 Lalazissis, Niksic, Vretenar, P.R., PRC 78, 034318 (2008):

 DD-ME2

 Roca-Maza, Vinas, Centelles, PR, Schuck, PRC 84, 54309 (2011)

Effective density dependence:

The basic idea comes from ab initio calculations density dependencd includes Brueckner correlations and threebody forces

a) non-linear meson couplings: NL3, FSU, PK1 ...

b) density dependent couplings: DD-ME1, DD-ME2

c) Point coupling models: PC-F1, DD-PC1, PC-PK1 ...

adjusted to ground state properties of finite nuclei

 Manakos and Mannel, Z.Phys. 330, 223 (1988)

 Bürvenich, Madland, Maruhn, Reinhard, PRC 65, 044308 (2002):

 Niksic, Vretenar, P.R., PRC 78, 034318 (2008):

 Zhao, Li, Yao, Meng, J. Meng, PRC, 82, 054319 (2010)

PC-F1 DD-PC1 PC-PK1 Transitional nuclei and changes of deformation in isotonic and isotopic chains

Applications: N = 28 isotones

The variation of the mean-field shapes is governed by the evolution of the underlying shell structure of single-nucleon orbitals. $\sqrt[60]{\gamma (deg)}$

⁴⁶Ar isotope: single-particle levels

⁴⁴S isotope: single-particle levels

⁴²Si isotope: single-particle levels

⁴⁰Mg isotope: single-particle levels

Density functional theory beyond mean field The Generator Coordinate Method

Constraint Hartree Fock produces wave functions depending on a generator coordinate q

 $|\Psi\rangle = \int dq f(q) |q\rangle$

GCM wave function is a superposition of Slater determinants

Hill-Wheeler equation:

 $\int dq' \left[q |H|q' \right] - E \left\langle q |q' \right\rangle f(q') = 0$

$$\left|\Psi\right\rangle = \int dq f(q) \hat{P}^{N} \hat{P}^{I} \left|q\right\rangle$$

with projection:

Relativistic GCM provides a tool for a quantitative assessment

Relativistic GCM provides a tool for a quantitative assessment

Low-lying spectra:

GCM(PP+PNP+1DAMP)

B(E3)

Weights: g^{J π}

projected energy:

Intrinsic density of the dominand configuration for each J^{π} -value

Enfu Zhou et al. 2016

Five dimensional collective Hamiltonian (5DCH)

The entire dynamics of the collective Hamiltonian is governed by seven functions of the intrinsic deformations β and γ : The collective potential energy, the three mass parameters $B_{\beta\beta}$, $B_{\beta\gamma}$, $B_{\gamma\gamma}$ and the three moment of inertia I_k

$$egin{aligned} H_{ ext{coll}} &= \mathcal{T}_{ ext{vib}}(eta,\gamma) + \mathcal{T}_{ ext{rot}}(eta,\gamma,\Omega) + \mathcal{V}_{ ext{coll}}(eta,\gamma) \ \mathcal{T}_{ ext{vib}} &= rac{1}{2}B_{etaeta}\dot{eta}^2 + eta B_{eta\gamma}\dot{eta}\dot{\gamma} + rac{1}{2}eta^2 B_{\gamma\gamma}\dot{\gamma}^2 \ \mathcal{T}_{ ext{rot}} &= rac{1}{2}\sum_{k}\mathcal{T}_k\omega_k^2 \end{aligned}$$

k=1

Benchmark calculation: GCM \leftrightarrow 5DCH

Generator-Coordinates: $q = (\beta, \gamma)$ Projection on J: (3 angles)

$$JNZ;\alpha\rangle = \sum_{q,K} f_{\alpha}^{JK}(q) \hat{P}_{MK}^{J} \hat{P}^{N} \hat{P}^{Z} |q\rangle,$$

Bohr Hamiltonian: $H = -\frac{\partial}{dq} \frac{1}{2B(q)} \frac{\partial}{dq} + V(q) + V_{corr}(q)$

J.M. Yao, K. Hagino, Z.P. Li, P.R., J. Meng PRC (2014)

J.M. Yao et al, PRC (2014)

Full moment of inertia expressed by phonons:

$$\mathcal{J}_{TV} = 2\sum_{\mu} \frac{\langle \mu | j_x | 0 \rangle}{\Omega_{\mu} - \Omega_0}$$

Thouless, Valatin Nucl. Phys. 31, 211 (1962)

Solution

in different orders

Z.P. Li et al, PRC. 86, 34334 (2012)

(C)DFT and the Shell Model

(C)DFT

Universal density functionals

Symmetry broken Single config. fruitful physics No Configuration mixing

Applicable for almost all nuclei No spectroscopic properties

Shell Model

Non-universal effective interactions

No symmetry broken Single config. little physics Configuration mixing

intractable for deformed heavy nuclei
 spectroscopy from multi config.

a theory combining the advantages from both approaches ?

Pengwei Zhao, Jie Meng, P.R., PRC 94, 041301 (2016)

Configuration Interaction Projected DFT (CI-PDFT)

$$|\Psi^{I}\rangle = C_{0}P^{I}|q\rangle + \sum C_{\mu\nu}P^{I}\alpha^{\dagger}_{\mu}\alpha^{\dagger}_{\nu}|q\rangle + \dots$$

 $\mu\nu$

Pengwei Zhao, Jie Meng, P.R., PRC 94, 041301 (2016)

Level scheme for ⁵⁴Cr

Pengwei Zhao, Jie Meng, P.R., PRC (2016) in print

⁵⁴Cr Cal. Exp. Cal.

Towards neutron-rich nuclei

Half live of 0vββ decay

Assuming the light neutrino decay mechanism, we find the decay rate:

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G_{0\nu} g_A^4 \frac{\langle m_\nu \rangle^2}{m_e^2} |M^{0\nu}|^2$$

- g_A : axial vector coupling constant
- m_e : electron mass
- $G_{0\nu}$: kinematic phase space factor

$$\langle m_{
u}
angle$$
 : effective neutrino mass: $\langle m_{
u}
angle = \sum_k U_{ek}^2 m_k \xi_k$

 $M^{0\nu}$: nuclear matrix element (NME)

The observation of $0v\beta\beta$ -decay

would teach us the nature of the neutrino.

and the neutrino mass (provided that the NME is known)

Kotila 2012: PRC 85, 034016 Bilenky 1987: RMP 59, 671

Ovßß - matrix elements:

weak interaction:

$$\mathcal{H}_{\text{weak}}(x) = \frac{G_F \cos \theta_C}{\sqrt{2}} j^{\mu}(x) J^{\dagger}_{\mu}(x) + h.c.$$

leptonic current (V-A):

 $j^{\mu}(x) = \bar{e}(x)\gamma^{\mu}(1-\gamma_5)\nu_e(x)$

hadronic current:

$$J_{\mu}^{\dagger}(x) = \bar{\psi}_{p}(x) \left[g_{V}(q^{2})\gamma_{\mu} - ig_{M}(q^{2}) \frac{\sigma_{\mu\nu}}{2m_{p}} q^{\nu} - g_{A}(q^{2})\gamma_{\mu}\gamma_{5} + g_{P}(q^{2})\gamma_{5}q_{\mu} \right] \tau_{-}\psi_{n}(x)$$

Second order perturbation theory and integration over leptonic sector:

$$\mathcal{O}^{0\nu} = \frac{4\pi R}{g_A^2} \int \frac{d^3q}{(2\pi)^2} \frac{e^{i\mathbf{q}(\mathbf{x}_1 - \mathbf{x}_2)}}{q} \sum_m \frac{J_{\mu}^{\dagger}(\mathbf{x}_1) |m\rangle \langle m| J^{\mu\dagger}(\mathbf{x}_2)}{q + E_m - E_0 - Q_{\beta\beta}/2}$$

 $E_m - E_0 - Q_{\beta\beta}/2 \to E_d$ and closure approximation: $\sum_m |m\rangle \langle m| \to 1$

Nuclear wave functions:

• Intrinsic state:

self-consistent constained RMF+BCS calculations: $|\beta\rangle = |\Phi(\beta)\rangle$

- Projected state: $|JZN,\beta\rangle = \hat{P}^J \hat{P}^Z \hat{P}^N |\beta\rangle$
- Generator coordinate method (GCM): shape mixing

$$|\Psi^{JZN}\rangle = \int d\beta f(\beta) |JZN,\beta\rangle$$

• Transition matrix element:

$$M^{0\nu} = \int \int d\beta_F d\beta_I f^*(\beta_F) f(\beta_I) M^{0\nu}(\beta_F, \beta_I)$$
$$M^{0\nu}(\beta_F, \beta_I) = \sum_{pp'nn'} \langle pp' | \mathcal{O} | nn' \rangle \langle \beta_F | c_p^{\dagger} c_p^{\dagger} c_n c_n | IZN, \beta_I \rangle$$

Basic assumptions:

- Closure approximation
- Higher order currents are fully incorporated
- The tensorial part is included automatically
- Finite nuclear size corrections are taken into accout by form factors g(q²) (from Simkovic et al, PRC 2008)
- Short range correlations are neglected
- $g_A(0) = 1.254$ (no renormalization)

Transition ¹⁵⁰Nd \rightarrow ¹⁵⁰Sm: Matrix element of 0v $\beta\beta$ decay and its contributions:

- The matrix elements differ by a factor 2 to 3
- Density functionals are at the upper end
- Not much sensitivity to the EDF (except for ¹⁵⁰Nd)
- Relativistic effects and tensor terms are with 10 %

J.M. Yao, L.S. Song, K.Hagino, P.R., J.Meng, PRC 91, 24316 (2015)

The influence of short range correlations

Jastrow factor: $F(r) = 1 - ce^{-ar^2}(1 - br^2)$,

Timedependent density functional theory:

Exact solution $|\Psi(t)\rangle$ of a time-dependent Schroedinger equation with initial condition $|\Psi(0)\rangle$

$$i\partial_t |\Psi(t)\rangle = (\hat{H} + f_{\text{ext}}(t))|\Psi(t)\rangle$$

Runge-Gross theorem (1984):

One-to-one correspondence: $\rho(\mathbf{r}, t) \iff f_{\text{ext}}(\mathbf{r}, t)$ and there exists a fictitious system of non-interacting particles with the wave functions $\varphi_i(\mathbf{r}, t)$ satisfying

$$i\partial_t \varphi_i(\mathbf{r},t) = \left[-\nabla^2/2m + v_{\text{eff}}[\rho](\mathbf{r},t)\right] \varphi_i(\mathbf{r},t).$$

for a $v_{\text{eff}}[\rho](\mathbf{r},t)$ and $\rho(\mathbf{r},t) = \sum_{i}^{A} |\varphi_{i}(\mathbf{r},t)|^{2}$ is the exact density of the interacting many-body system. $v_{\text{eff}}[\rho](\mathbf{r},t)$ is a function of \mathbf{r} and t, but it is in addition a unique functional of the time-dependent density $\rho(\mathbf{r},t)$.

Linear response theory:

If $f_{\text{ext}}(\mathbf{r},t)$ is weak we have: $\rho(\mathbf{r},t) = \rho_{\text{s}}(\mathbf{r}) + \delta \rho(\mathbf{r},t)$.

and:
$$\boldsymbol{v}[\boldsymbol{\rho}](\mathbf{r},t) = v_s(\mathbf{r}) + \int dt' \int d^3r' V(\mathbf{r},\mathbf{r}',t-t') \delta \boldsymbol{\rho}(\mathbf{r},t').$$

 $V \text{ is an effective interaction } V(\mathbf{r}, \mathbf{r}', t - t') = \frac{\delta v(\mathbf{r}, t)}{\delta \rho(\mathbf{r}', t')} \Big|_{\rho = \rho_{s}}.$ For $\delta \rho(\mathbf{r}, t) = \int d^{3}r' \int dt' R(\mathbf{r}, \mathbf{r}', t - t') f_{ext}(\mathbf{r}', t')$ we find $R(\omega) = R_{0}(\omega) + R_{0}(\omega)V(\omega)R(\omega)$

All these quantities are functionals of the exact ground state density $\rho_s(\mathbf{r})$.

If f_{ext} is weak, these equations are exact, but we do not know the functional $v[\rho(\mathbf{r}, t)]$ nor its functional derivative at $\rho = \rho_{\text{s}}$.

The adiabatic approximation:

Here one neglects the memory and assumes that the density changes only very slowly, such that the potential is given at each time by the static potential v_s corresponding to this density.

 $v[\rho](\mathbf{r},t) \approx v_s[\rho_s](\mathbf{r},t)$

In this approximation $v[\rho]$ is no longer depending on the function $\rho(\mathbf{r}, t)$ of 4 variables, but rather on the function $\rho_s(\mathbf{r}) = \rho(\mathbf{r}, t)$ depending only 3 variables. The time is just a parameter. We obtain for the effective interaction in the adiabatic approximation

$$V_{ad}(\mathbf{r}, \mathbf{r}', t - t') = \frac{\delta E[\rho_s]}{\delta \rho_s(\mathbf{r}) \delta \rho_s(\mathbf{r}')} \delta(t - t')$$

This approximation is well known. It corresponds to the small amplitude limit of the time-dependent mean field equations, i.e. to RPA or in superfluid systems to QRPA and it is extensively used in nuclear physics.

Problem: single particle spectra

The single particle energies are fragmented:

 $(^{3}He,d)$ (α ,t) reactions

Distribution of single-particle strength in ²⁰⁹Bi

Single particle spectrum in the Pb-region:

E. Litvinova and P. R., PRC 73, 44328 (2006)

Spectroscopic factors in ¹³³Sn:

Nucleus	State	Stheor	Sexpt
¹³³ Sn	$2f_{7/2}$	0.89	0.86 ± 0.16
	$3p_{3/2}$	0.91	0.92 ± 0.18
	$1h_{9/2}$	0.88	
	$3p_{1/2}$	0.91	1.1 ± 0.3
	$2f_{5/2}$	0.89	1.1 ± 0.2

E. Litvinova and A. Afanasjev, PRC 84 (201	1)
--	----

Width of giant resonances:

The full response contains energy dependent parts coming from vibrational couplings.

Width of giant resonances:

The full response contains energy dependent parts coming from vibrational couplings.

Problem of divergengies: Renormalization of the interaction: $V(\omega) \rightarrow V_{RPA} + V(\omega) - V(0)$

Coupling to surface vibrations (2p2h): IVGD:

Conclusions:

- Density functional theory in nuclei is very successful:
- technically simple easy to visualize universal
- At present there is no microscopic derivation
- Covariant density functionals have many advantages
- DFT is deeply connected with symmetry violation
- Extensions beyond-mean field:
- GCM for various deformations
- 5D-collective Hamiltonian is a good approximation
- Configuration Interaction Projected DFT (CI-PDFT)
- Particle-Vibrational Coupling in time-dependent mean field theory

Outlook

Better understanding of single particle structure tensor force

particle-vibrational coupling

- Microscopic derivation of density functionals
- relativistic Brueckner-Hartree-Fock theory
- . . .

Thanks to my collaborators:

J. Meng	(Beijing)
P. W. Zhao	(Beijing)
L. S. Song	(Beijing)
Jiangming Yao	(Michigan State Univ.).
Zhipan Li	(Chongqing)
E.F. Zhou	(Chongqing)
G. Lalazissis	(Thessaloniki)

E. Litvinova (Western Michigan Univ.)

D. Vretenar (Zagreb) T. Niksic (Zagreb)