

What do we know about the 229Th nuclear clock isomer?

P.G. Thirolf, LMU München

"Thorium story" has reached a pivot point:

- Search & Characterization Phase: nuclear physics-driven

 → remind huge progress from last 4 years
- Consolidation & Realization Phase: laser-driven
 - → ongoing efforts and upcoming next steps

LMU LUDWIG Unique properties of the 229m Th Isomer NU OICK

2

lowest E* of all ca. 184000 presently known nuclear excited states

→ △E/E ~ 10⁻²⁰: extremely stable nuclear frequency standard: 'nuclear clock'

Applications of Nuclear Clocks

nuolock

Improved precision of satellite-based navigation (GPS, Galileo..): m → cm (mm ?)

Temporal variation of fundamental constants

 theoretical suggestion: temporal (spatial) variations of fundamental "constants"

 $\dot{\alpha}/\alpha = (-0.7 \pm 2.1) \cdot 10^{-17} \text{ yr}^{-1}$

R. Godun et al., PRL 113, 201801 (2014)

- enhanced sensitivity by $(10^2 - 10^5)$ of ^{229m}Th expected

Search for Dark Matter

- topological dark matter: clumped to point-like monopoles, 1D strings, 2D 'domain walls'
- use networks of ultra-precise synchronized clocks
- **3D gravity sensor:** 'relativistic geodesy'
 - best present clocks: detect gravitational shifts of \pm 1 cm
 - precise, fast measurements of nuclear clock network: monitor volcanic magma chambers, tectonic plate movements

f: clock frequency U: gravitat. potential

PT et al., Annalen d. Physik 531, 1800391 (2019)

3

<u>"Thorium Isomer Factory"</u>

IAXIMILIAN:

UNIVERSITÄT

MLL

LMU

nuolock

approach: populate isomeric state via 2% decay branch in α decay of ²³³U

229mTh3+

Detection of Direct Isomer Decay

extracted ^{229(m)}Th^{q+} ions: - impinging directly onto MCP surface

+6000 V

- 'soft landing' on MCP surface: avoid ionic impact signal
- neutralization of Th ions
- \rightarrow isomer decay by Internal Conversion:
 - only allowed in neutral ²²⁹Th:
- \rightarrow conversion electron emission

IP(Th⁺, 6.31 eV) < E^{*}(^{229m}Th, 8.28 eV)

L. v.d. Wense, PT et al., Nature 533, 47-51 (2016)

• isomer lifetime: reduction expected by ca. 10⁻⁹ (from ~10⁴ s \rightarrow ~ 10 µs): α_{IC} ~ 10⁹

P.G. Thirolf, LMU München

5

Halflife of (neutral) 229mTh

nuelock

- operate segmented RFQ as linear Paul trap: pulsed ion extraction
- ion bunches: width ca. 10 μ s, ~ 400 $^{229(m)}$ Th^{2+,3+} ions/bunch

- charged ^{229m}Th²⁺: $t_{1/2} > 1$ min. (limited by ion storage time in RFQ, i.e vacuum quality)
- after neutralization on MCP surface:

$$t_{1/2} = 7 \pm 1 \ \mu s$$

 \rightarrow in agreement with expected $\alpha_{IC} \sim 10^9$

B. Seiferle, L. v.d. Wense, PT, PRL 118, 042501 (2017)

LMU LUDWIG-MAXIVERIATE Resolve Hyperfine Structure of 229m Th NU OICK

Collaboration with PTB Braunschweig

• Doppler-free two-step laser excitation ($J=2\rightarrow 1\rightarrow 0$) of ^{229m}Th²⁺:

MLL

scan co- & counter-propagating lasers

ground state: (I=5/2): 9 transitions **isomeric state:** (I=3/2): 8 transitions

J. Thielking,..., PT et al., Nature 556, 321-325 (2018)

Excitation Energy Measurement

10

Excitation Energy: Analysis

Experimental challenge:

 resonant neutralization of ^{229m}Th^{q+} ends in excited atomic state and IC decay leads to excited electronic states

- IC transitions from ≤ 4 excited atomic states could be resolved
- measurement: no steps clearly identified: ≥ 5 initial states must contribute
- 82 states can contribute in relevant energy range (below 20000 cm⁻¹, ≈ 2.5 eV)
- individual population unknown

atomic calculations:

- P. Bilous, A. Palffy (MPIK Heidelberg)
- F. Libisch, C. Lemell (TU Wien)

Excitation Energy: Analysis

fit error function to measured data:

→ deflection point E_{defl} = 1.77(3) eV

 \rightarrow E*(iso) = E_{defl} + E₀

 \rightarrow predict E_0 from simulated spectra

$$f(u) = a (1 - erf [(U - E_{defl}) / b])$$

\rightarrow create simulated data from combinations of (N=5) initial atomic states:

Expected IC electron energy spectra 20000 population distributions: any 5 (of 82) E_i to all possible final E_f 0.06 simulated data $E_0 = 6.51(1) \text{ eV}$ fitted curve N=5 0.05 0.04 Probability 0.02 0.01 N=5 0 0.5 2 2.5 3 0 1.5 5.8 6 6.2 6.4 6.6 6.8 7 7.2 Retarding voltage [-V] E_{off} [eV]

11 P.G. Thirolf, LMU München

Excitation Energy: Analysis

Findings from simulated spectra:

robust position of $E_0 \rightarrow E_0 = 6.51(1) \text{ eV}$

larger N : smaller uncertainty of E₀

→ N=5: conservative estimate of experimental uncertainty

 $\rightarrow E_0 = 6.51 \pm 0.16 \text{ eV}$

First direct measurement:

E*(iso) = 8.28 ± 0.17 eV (= 149.7 ± 3.1 nm)

B. Seiferle, PT et al., Nature 575 (2019)

12 P.G. Thirolf, LMU München

E* = 8.28 ± 0.17 eV

 $\lambda = 149.7 \pm 3.1 \text{ nm}$

Existence of ^{229m}Th: first direct detection via IC decay

Achievements in

- Half-life of neutral ^{229m}Th: $t_{1/2} = 7 \mu s \rightarrow \alpha_{IC} \sim 10^9$
- Hyperfine structure of ^{229m}Th
 - \rightarrow via collinear laser spectroscopy
 - \rightarrow nuclear moments, charge radius
- isomeric excitation energy:

 \rightarrow via retarding field magnetic bottle electron spectrometer

(excludes laser crystal approaches)

 \rightarrow clarifies regime of laser technology for optical control

P.G. Thirolf, LMU München

LMU

13

Nature 533 (2016) PRL 118 (2017)

Nature 556 (2018)

method: EPJ A53 (2017)

first direct measurement: Nature 575 (2019)

The long way towards the

Nuclear Clock

still to bridge: 14 orders of magnitude:

nuelock

look back: huge progress in last 4 years:

identification & characterization of the thorium isomer

look ahead: ongoing consolidation & next steps

- excitation energy from complementary techniques
- cryogenic Paul trap, sympathetic (Sr⁺) laser cooling
- ^{229m}Th ionic lifetime
- determine sensitivity enhancement for $\dot{\alpha}$
- doped-crystal approach: radiative, IC branches
- Iaser spectroscopy: resonance search

ambitious, exciting, important research topic:

- excite for the first time ever the nuclear transition by laser
- build clocks based on completely new principles
- ability to drastically improve sensitivity to new physics
- ability to search for dark matter candidates not accessible by any other means

the door is open for the realization of a nuclear clock ...

- 15 P.G. Thirolf, LMU München
- 3rd Intern. Workshop on "Shapes and Dynamics of Atomic Nuclei", Sofia, Bulgaria, October 3-5, 2019

Thanks to

nuolock

MLL

- LMU Munich: L. v.d. Wense, B. Seiferle, N. Arlt, B. Kotulski, I. Amersdorffer
- PTB Braunschweig: J. Thielking, P. Glowacki, D.M. Meier M. Okhapkin, E. Peik
- GSI Darmstadt & Helmholtz-Institut Mainz: M. Laatiaoui
- Helmholtz-Institut Mainz & Johannes Gutenberg-Universität Mainz: C. Mokry, J. Runke, K. Eberhardt, N.G. Trautmann, C.E. Düllmann
- TU Wien: T. Schumm, S. Stellmer, K. Beeks, C. Lemell, F. Libisch
- MPQ: J. Weitenberg, T. Udem
- MPI-HD: A. Pàlffy, P. Bilous, N. Minkov, J. Crespo NIST: S. Nam, G. O'Neill
- UCLA: E. Hudson, C. Schneider, J. Jeet

for vour attent 3rd Intern. Workshop on "Shapes and Dynamics of Atomic Nuclei", Sofia, Bulgaria, October 3-5, 2019 P.G. Thirolf, LMU München