Int. Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" ed. Nikolay Minkov, Heron Press, Sofia 2019

K-isomeric states in heavy, well-deformed nuclei within a microscopic framework with selfconsistent blocking and consistent pairing

L. Bonneau¹, P. Quentin^{2,3,1}, N. Minkov⁴, D. Ivanova⁵, J. Bartel, H. Molique⁶, Meng Hock Koh^{7,8}

¹CENBG, UMR 5797, Université de Bordeaux, CNRS-IN2P3, Gradignan, France

²Division of Nuclear Physics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

³Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

⁴INRNE, BAS, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria

⁵Military Medical Academy; UMHAT "Saint Ekaterina", Sofia, Bulgaria

⁶IPHC, UMR 7178, Université de Strasbourg, CNRS-IN2P3, Strasbourg, France ⁷Department of Physics, Faculty of Sciences, UTM, Johor Bahru, Malaysia

⁸UTM Center for Industrial and Applied Mathematics, UTM, Johor Bahru, Malaysia

Abstract

K-isomeric states of well-deformed heavy nuclei are known to yield important information about nuclear dynamics involving at the same time collective and single-particle degrees of freedom. Studying them offers an opportunity to assess properties of nuclear mean field and residual interaction. From the point of view of collective degrees-of-freedom K isomers can provide information about the nuclear shapes that can favor appearance of such isomeric states and that determine binding energy and electromagnetic decays from these states.

In this presentation I will report on recent microscopic calculations of Kisomeric states of multiquasiparticle character in well-deformed rare-earth nuclei and actinide nuclei. In these calculations we employ a Skyrme energydensity functional together with a seniority residual interaction in the Hartree-Fock-BCS approximation with selfconsistent blocking (see Refs. [1, 2]). The strength of the seniority force is calibrated in a consistent way: as shown in [3] for rare-earth nuclei, the same strength can be obtained in a fit on moments of inertia of even-even nuclei and in a fit on odd-even mass staggering. The former fitting protocol is used for the actinide nuclei studied here. Once the seniority force is adjusted we have calculated properties of various K-isomeric states without additional parameters. Overall we have obtained a reasonable agreement with available data around ¹⁵⁴Nd and in the ²³⁴U-²³⁶Pu region. In the latter case the effect of intrinsic parity breaking is currently under study.

References

- L. Bonneau, N. Minkov, Dao Duy Duc, P. Quentin, and J. Bartel, *Phys. Rev. C* 91 (2015) 054307.
- [2] Meng Hock Koh, Dao Duy Duc, T. V. Nhan Hao, Ha Thuy Long, P. Quentin, and L. Bonneau, *Eur. Phys. J. A* 52 (2016) 3.
- [3] Nurhafiza M. Nor, Nor-Anita Rezle, Kai-Wen Kelvin-Lee, Meng Hock Koh, L. Bonneau and P. Quentin, *Phys. Rev. C* 99 (2019) 064306.