Nuclear shape evolution, mixing and coexistence in the frame of the Bohr model

A. Ait Ben Mennana¹, R. Benjadi¹, A. I. Budaca², R. Budaca², P. Buganu², Y. EL Bassem^{1,3}, A. Lahbas^{1,4}, M. Oulne¹

Abstract

Shape evolution as a function of the total angular momentum, respectively shape mixing and coexistence phenomena could be alternatively investigated in the frame of the Bohr model by considering a polynomial potential in the β variable, which can simulate two minima separated by a barrier [1]. For a small height of the barrier, one has shape fluctuations as in the case of a critical point of a shape phase transition, while by increasing the barrier, the coexistence and mixing features emerge [2]. Preliminary applications of the model for several nuclei as 238 Pu, 152 Nd, 170 Hf [1], 76 Kr [2], 72,74,76 Se [3] and 96,98,100 Mo [4] come to support this assumption. Moreover, the model has been recently applied for other two nuclei suspected for shape evolution with spin, coexistence and mixing phenomena, namely 74 Ge and 74 Kr [5], contributing in this way to a better understanding of their structure, respectively opening a door for other future applications.

References

- [1] R. Budaca, P. Buganu, A. I. Budaca, Phys. Lett. B 776 (2018) 26-31.
- [2] R. Budaca, A. I. Budaca, EPL, 123 (2018) 42001.
- [3] R. Budaca, P. Buganu, A. I. Budaca, Nucl. Phys. A 990 (2019) 137-148.
- [4] R. Budaca, A. I. Budaca, P. Buganu, J. Phys. G: Nucl. Part. Phys. 46 (2019) 125102.
- [5] A. Ait Ben Mennana, R. Benjedi, R. Budaca, P. Buganu, Y. EL Bassem, A. Lahbas, M. Oulne, *paper submitted to publication* (2021).

¹High Energy Physics and Astrophysics Laboratory, Department of Physics, Faculty of Science Semlalia, Cadi Ayyad University, P. O. B. 2390, Marrakesh, Morocco

²Horia Hulubei—National Institute of Physics and Nuclear Engineering, 077125, Bucharest-Magurele, Romania

³Research Team ERMAM, Polydisciplinary Faculty of Quarzazate, Ibn Zhor University, Box 638, Quarzazate, Morocco

⁴ESMaR, Department of Physics, Faculty of Science, Mohammed V University in Rabat, 10000 Rabat, Morocco