Symmetries as a framework for understanding signatures of collectivity and shape coexistence

M.A. Caprio1, A.E. McCoy2, P.J. Fasano1

1Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
2Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA

Abstract

\textit{Ab initio} nuclear theory provides not only a microscopic framework for quantitative description of the nuclear many-body system, but also a foundation for deeper understanding of collective behavior. When the the low-lying spectra of \(p\)-shell nuclei are predicted in no-core configuration interaction (NCCI), or no-core shell model (NCSM), calculations, rotational bands with vastly different structure and deformation are found to appear within the same nucleus \cite{1–4}. To gain insight into the structure and correlations which give rise to this emergent collective behavior and shape coexistence, we decompose the calculated wave functions by symmetry content. In particular, we consider the symmetries associated with Elliott’s SU(3) group, which is tied to nuclear rotation and deformation, and the symplectic group \(\text{Sp}(3, \mathbb{R})\), which furthermore incorporates giant monopole and quadrupole resonance degrees of freedom. These decompositions demonstrate that Elliott’s SU(3) rotational model provides a natural framework for understanding the emergence of rotational bands throughout the \(p\)-shell.

Supported by US DOE under Award Nos. DE-FG02-95ER-40934 and DE-FG02-00ER41132. Computational resources provided by NERSC (US DOE Contract No. DE-AC02-05CH11231).

References