Shapes and symmetries in $A \sim 130$ nuclei: A perspective through measured transition probabilities

Pragya Das, Umakant Lamani, Himanshu Kumar Singh

Physics Department, IIT Bombay, Powai, Mumbai-400076, India

Abstract

The triaxial nuclear shapes often give rise to signature splitting, and inversion can occur due to shape change. We investigated the triaxial nuclei 126I [1], 129Cs [2] and 127I from the B(E2) values, by measuring the lifetimes (in ps) using Doppler Shift Attenuation Method (DSAM). The stable beams of 7Li and 11B, delivered by the Pelletron accelerators at TIFR (Mumbai, India) and IUAC (New Delhi, India), were bombarded on enriched targets of 124Sn. The experimental set-up consisted of 15-18 Compton suppressed HPGe clover detectors.

The figure (left) presents an example of DSAM lineshapes for 127I in the forward (32°), backward (148°), and 90° detectors. The right figure shows the signature splittings and inversion for $\pi g_{7/2}$ bands; however, no inversion occurs for 129Cs. Our measured B(E2) values were within the range 0.1-0.6 e2b2. We compared the signature splittings, inversion and B(E2) values with the theoretical particle rotor model (PRM) estimates, and extracted the nuclear deformation (β, γ in Lund convention). There was a larger shape asymmetry found for 127I ($\beta=0.23$, $\bar{\gamma}=33^\circ$) than for 129Cs ($\beta=0.15$, $\gamma=18^\circ$) [2].

References