Nuclear structure studies with high-precision mass measurements of spontaneous fission fragments at the FRS-IC

A. Spătaru1,2,3, D. Amanbayev4, S. Ayet3, D. L. Balabanski1,2, Š. Beck1,4, J. Bergmann1, P. Constantin1, T. Dickel3,4, H. Geissel1,4, C. Hornung3, N. Kalantar-Nayestanaki5, G. Kripko-Koncz4, I. Mardor6,7, A. Molleabrahimi1,8, W. R. Plaß1,4, C. Scheidenberger1,4, M. Wasserheß4, J. Zhao3

1Extreme Light Infrastructure – Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Măgurele, Romania
2Doctoral School in Engineering and Applications of Lasers and Accelerators, University Politehnica of Bucharest, Romania
3GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany
4II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Germany
5ESRIG, University of Groningen, Groningen, The Netherlands
6Tel Aviv University, 6997801 Tel Aviv, Israel
7Soreq Nuclear Research Center, 81800 Yavne, Israel
8TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Abstract

At the FRS - Ion Catcher (FRS-IC) [1] setup at GSI, high-precision mass measurements of 252Cf fission products have been performed with a multiple-reflection time-of-flight mass-spectrometer (MR-TOF-MS) [2].

In this work we focus on the analysis of fission fragments at N=90 and Z=56-62. The results include new measured masses and first direct mass measurements of several isotopes. The two neutron separation energies, S_{2n}, and the average interaction of the last protons with the last neutrons, δV_{pn}, were extended with the new measurements. Their implications in ground-state phase transitions [3] and shell structure [4] are discussed. The mass measurements are compared with the existing data of indirect measurements and with the most recent atomic mass evaluation (AME) [5] values.

References