Reviewing nuclear structure properties of even-even Yb isotopes

A. Zyriliou1, T. J. Mertzimekis1, A. Chalil1,4, P. Vasileiou1, S. Pelonis1, E. Mavrommatis1, Dennis Bonatsos2, Andriana Martinou2, S. Peroulis2, N. Minkov3, C. Nita3, N. Mârginean4, C. Mihaï5, D. Bucurescu5, D. Filipescu5, I. Gheorghe5, R. Lică5, R. Mârginean5, A. Negret5, L. Stroe5, S. Toma5, R. Șuvăilă5, N.V. Zamfir5, C.A. Ur5

1Department of Physics, National and Kapodistrian University of Athens, Zografou Campus, GR-15784, Athens, Greece
2Institute of Nuclear and Particle Physics, NCSR “Demokritos”, GR-15310, Agia Paraskevi, Greece
3Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784, Sofia, Bulgaria
4IRFU, CEA, Université Paris-Saclay, FR-91190, Paris, France
5Horia Hulubei National Institute of Physics and Nuclear Engineering, R-077125, Bucharest, Romania

Abstract

The medium–to–heavy mass ytterbium isotopes (\(\text{Yb}\)) in the rare–earth mass region are known to be well–deformed nuclei, which can be populated to very high spin. Spectroscopic information becomes scarcer as the neutron number increases, impeding the understanding of nuclear structure in this mass region, where interesting phenomena, such as shape coexistence, have been predicted [1]. The lack of any experimental information on the structure of the neutron–rich \(^{180}\text{Yb}\) isotope and the lifetime of the \(2^+\) state of \(^{178}\text{Yb}\) have greatly motivated this study, which can offer useful information for the collective behavior of neutrons and protons, the evolution of shape and shape coexistence. A measurement was performed to investigate the population of excited states and a first measurement of the unknown \(2^+\) lifetime of \(^{178}\text{Yb}\) by means of a two neutron–transfer reaction \(^{176}\text{Yb}\left(^{18}\text{O}, ^{16}\text{O}\right) ^{178}\text{Yb}\) at energies 68–74 MeV using the ROSPHERE [2] array at IFIN–HH, Romania. From the theoretical point of view, in this work, energy levels, deformation parameters \(\beta_2\), reduced transition probabilities \(B(E2)\) and transition quadrupole moments \(Q\) for even–even Yb isotopes have been calculated using a Phenomenological Model, the Interacting Boson Model and various other theoretical models, including the recently developed proxy SU(3) model [3]. Along these lines, the results for the even–even \(^{164–178}\text{Yb}\) isotopes are compared to available experimental data [4,5], serving as benchmarks for more detailed studies in the near future. An overall good agreement was found between available adopted data and theoretical predictions.
This research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 101742/2019) for AZ. Support by EN-SAR2 is acknowledged.

References

