Shape coexistence and mixing within the Bohr model

A. Ait Ben Mennana ${ }^{1}$, R. Benjedi ${ }^{1}$, R. Budaca ${ }^{2}$, A. I. Budaca ${ }^{2}$, P. Buganu ${ }^{2}$, Y. EL Bassem ${ }^{1,3}$, A. Lahbas ${ }^{1,4}$, M. Oulne ${ }^{1}$
${ }^{1}$ High Energy Physics and Astrophysics Laboratory, Department of Physics, Faculty of Science Semlalia, Cadi Ayyad University, P. O. B. 2390, Marrakesh, Morocco
${ }^{2}$ Horia Hulubei-National Institute of Physics and Nuclear Engineering, 077125, Bucharest-Magurele, Romania
${ }^{3}$ Research Team ERMAM, Polydisciplinary Faculty of Ouarzazate, Ibn Zohr University, Box 638, Ouarzazate, Morocco
${ }^{4}$ ESMaR, Department of Physics, Faculty of Science, Mohammed V University in Rabat, 10000 Rabat, Morocco

Abstract

Shape evolution as a function of the total angular momentum, respectively shape mixing and coexistence phenomena could be alternatively investigated in the frame of the Bohr-Mottelson model by considering a polynomial potential in the β variable, which can simulate two minima separated by a barrier [1]. For a small height of the barrier, one has shape fluctuations as in the case of a critical point of a shape phase transition, while by increasing the barrier, the coexistence and mixing features emerge [2]. Preliminary applications of the model for several nuclei as ${ }^{238} \mathrm{Pu},{ }^{152} \mathrm{Nd},{ }^{170} \mathrm{Hf}$ [1], ${ }^{76} \mathrm{Kr}$ [2], ${ }^{72,74,76} \mathrm{Se}$ [3], ${ }^{96,98,100} \mathrm{Mo}$ [4], ${ }^{74} \mathrm{Ge},{ }^{74} \mathrm{Kr}$ [5] and ${ }^{80} \mathrm{Ge}$ [6], come to support this assumption. Moreover, the model has been recently applied for ${ }^{42} \mathrm{Ca}$ [7], hoping to contribute in this way to a better understanding of its level structure, respectively opening a door for other future applications of the model in the region of light nuclei.

References

[1] R. Budaca, P. Buganu and A. I. Budaca, Phys. Lett. B 776 (2018) 26-31.
[2] R. Budaca and A. I. Budaca, EPL, 123 (2018) 42001.
[3] R. Budaca, P. Buganu and A. I. Budaca, Nucl. Phys. A 990 (2019) 137-148.
[4] R. Budaca, A. I. Budaca and P. Buganu, J. Phys. G: Nucl. Part. Phys. 46 (2019) 125102.
[5] A. Ait Ben Mennana, R. Benjedi, R. Budaca, P. Buganu, Y. EL Bassem, A. Lahbas and M. Oulne, Phys. Scr. 96 (2021) 125306.
[6] A. Ait Ben Mennana, R. Benjedi, R. Budaca, P. Buganu, Y. EL Bassem, A. Lahbas and M. Oulne, Phys. Rev. C 105 (2022) 034347.
[7] R. Benjedi, R. Budaca, P. Buganu, Y. EL Bassem, A. Lahbas and M. Oulne, in preparation.

