Int. Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" ed. Nikolay Minkov, Heron Press, Sofia 2023

Shape coexistence and mixing within the Bohr model

A. Ait Ben Mennana¹, R. Benjedi¹, R. Budaca², A. I. Budaca², P. Buganu², Y. EL Bassem^{1,3}, A. Lahbas^{1,4}, M. Oulne¹

¹High Energy Physics and Astrophysics Laboratory, Department of Physics, Faculty of Science Semlalia, Cadi Ayyad University, P. O. B. 2390, Marrakesh, Morocco

²Horia Hulubei–National Institute of Physics and Nuclear Engineering, 077125, Bucharest-Magurele, Romania

³Research Team ERMAM, Polydisciplinary Faculty of Ouarzazate, Ibn Zohr University, Box 638, Ouarzazate, Morocco

⁴ESMaR, Department of Physics, Faculty of Science, Mohammed V University in Rabat, 10000 Rabat, Morocco

Abstract

Shape evolution as a function of the total angular momentum, respectively shape mixing and coexistence phenomena could be alternatively investigated in the frame of the Bohr-Mottelson model by considering a polynomial potential in the β variable, which can simulate two minima separated by a barrier [1]. For a small height of the barrier, one has shape fluctuations as in the case of a critical point of a shape phase transition, while by increasing the barrier, the coexistence and mixing features emerge [2]. Preliminary applications of the model for several nuclei as ²³⁸Pu, ¹⁵²Nd, ¹⁷⁰Hf [1], ⁷⁶Kr [2], ^{72,74,76}Se [3], ^{96,98,100}Mo [4], ⁷⁴Ge, ⁷⁴Kr [5] and ⁸⁰Ge [6], come to support this assumption. Moreover, the model has been recently applied for ⁴²Ca [7], hoping to contribute in this way to a better understanding of its level structure, respectively opening a door for other future applications of the model in the region of light nuclei.

References

- [1] R. Budaca, P. Buganu and A. I. Budaca, Phys. Lett. B 776 (2018) 26-31.
- [2] R. Budaca and A. I. Budaca, EPL, 123 (2018) 42001.
- [3] R. Budaca, P. Buganu and A. I. Budaca, Nucl. Phys. A 990 (2019) 137-148.
- [4] R. Budaca, A. I. Budaca and P. Buganu, J. Phys. G: Nucl. Part. Phys. 46 (2019) 125102.
- [5] A. Ait Ben Mennana, R. Benjedi, R. Budaca, P. Buganu, Y. EL Bassem, A. Lahbas and M. Oulne, *Phys. Scr.* 96 (2021) 125306.
- [6] A. Ait Ben Mennana, R. Benjedi, R. Budaca, P. Buganu, Y. EL Bassem, A. Lahbas and M. Oulne, *Phys. Rev. C* 105 (2022) 034347.
- [7] R. Benjedi, R. Budaca, P. Buganu, Y. EL Bassem, A. Lahbas and M. Oulne, *in preparation*.