Int. Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" ed. Nikolay Minkov, Heron Press, Sofia 2023

Study the structure of the low-lying states of ²⁰⁶Po

<u>D. Kocheva</u>¹, G. Rainovski¹, J. Jolie², A. Blazhev², M. Beckers², C. Fransen², K. A. Gladnishki¹, F. Spee², M. Stoyanova¹, G. De Gregorio³, H. Naïdja⁴, A. Gargano³, B. A. Brown²

¹Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria

²Institut für Kernphysik, Universität zu Köln, 50937 Cologne, Germany

³INFN Sezione di Napoli, IT-80126 Napoli, Italy

⁴Université Constantine 1, Laboratoire de Physique Mathématique et Subatomique (LPMS), Constantine 25000, Algeria

⁵Michigan State University, East Lansing, MI 48824-1321, USA

Abstract

In this study we present the results from an experiment dedicated to measure the lifetime of the 2_1^+ state of 206 Po. This nucleus was studied in the 2p-transfer reaction 204 Pb(16 O, 14 C) 206 Po and the lifetime of the 2_1^+ state was determined by utilizing the Recoil Distance Doppler Shift method. The experimental results were compared with shell-model calculations based on different effective interactions. The extracted $2_1^+ \rightarrow 0_1^+$ transition strength shows that the 2_1^+ state of 206 Po is of collective nature. In addition the lifetime of the 4_2^+ state was estimated and based on this estimation and the theoretical predictions we can conclude that there is clear indication for mixing of the first two 4^+ states of the nucleus 206 Po.