Proxy-SU(4) symmetry in A=60-90 region

V.K.B. Kota,

Physical Research Laboratory, Ahmedabad 380009, Gujarat, India

Abstract

Introduction of spin-isospin SU(4) algebra in 1937 by Wigner [1] and the rotational SU(3) algebra in 1958 by Elliott [2] are two most significant developments in nuclear structure physics. Following Elliott's seminal papers, SU(3)appeared, for describing rotational structures, clustering etc., in many different extended versions such as pseudo-SU(3) model, $Sp(6,R) \supset SU(3)$ scheme, SU(3) in IBM, IBFM and IBFFM models, SU(3) in FDSM, models for clustering in nuclei and so on [3]. Latest in this is the proxy-SU(3) model introduced by Bonatsos, Casten, Martinou, Minkov and others [4]. Applications of the proxy-SU(3) model to nuclei in A=60-90 region introduces proxy-SU(4) symmetry. Shell model spaces with single particle (sp) orbits $^1p_{3/2}$, $^1p_{1/2}$, $^0f_{5/2}$ and $^0g_{9/2}$ are essential for these nuclei and also protons and neutrons in these region occupy the same sp orbits. With this and applying the "proxy scheme", the $^0g_{9/2}$ changes to ${}^0f_{7/2}$ giving the SGA $U(40)\supset [U(10)\supset G\supset SO(3)]\otimes [SU(4)\supset G$ $SU_S(2) \otimes SU_T(2)$]. With G = SU(3), we have proxy-SU(3) model that is described in detail in [4]. It is easy to see that the proxy-SU(3) implies goodness of the SU(4) symmetry appearing above, i.e. proxy-SU(4) symmetry. Shell model calculations pointing out the need for ${}^0g_{9/2}$ orbit, ground state masses, shape changes and shape co-existence in A=60-90 region and GT distributions for example clearly show the importance of proxy-SU(4) in this mass region. Besides presenting this evidence, new proxy schemes with G = SU(5), $SU(4) \sim SO(6)$ and SO(10) that are generated by good proxy-SU(4) symmetry are described.

References

- [1] E.P. Wigner Phys. Rev. 51 (1937) 106-119.
- [2] J.P. Elliott, Proc. R. Soc. Lond. Ser. A 245 (1958), 128-145; 562-581.
- [3] V.K.B. Kota, SU(3) Symmetry in Atomic Nuclei, Springer Nature, Singapore (2020).
- [4] D. Bonatsos, A. Martinou, S.K. Peroulis, T.J. Mertzimekis and N. Minkov, *Symmetry* **12** (2023) 169/1-34.