Int. Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" ed. Nikolay Minkov, Heron Press, Sofia 2023

Lifetime investigations in the $A \sim 120$ region

P. Vasileiou¹, T.J. Mertzimekis¹, M. Efstathiou¹, A. Zyriliou¹, A. Karadimas¹, A. Chalil², P. Koseoglou³, D. Bonatsos⁴, A. Martinou⁴, C. Mihai⁵, C. Costache⁵, R. Lică⁵, R.E. Mihai⁵, **R.** Borcea⁵, A. Turturica⁵, N. Florea⁵, N. Mărginean⁵

¹National & Kapodistrian University of Athens, GR-15784 Athens, Greece ²U. Claude Bernard, Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622 Villeurbanne, France ³Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany

⁴INPP, NCSR "Demokritos", GR-15310 Aghia Paraskevi, Greece

⁵NIPNE, R-077125 Magurele, Romania

Abstract

The neutron-deficient region around $A \sim 120$ is a fertile ground for nuclear structure studies, as single-particle degrees of freedom compete with collective phenomena to form several of the observed spectroscopic properties. This work reports on the progress and the preliminary results of a recent experiment performed at IFIN-HH, in Magurele, Romania, focused around the measurement of lifetimes of excited states in neutron-deficient Te isotopes, by means of the Fast Electronic Scintillation Timing (FEST, or fast-timing) technique [1]. A ¹¹B beam of $E_{lab} = 35$ MeV impinging on a 5 mg/cm² ^{nat}Ag target was used to populate excited states in ^{115–120}Te. The γ rays de–exciting these levels were detected by the ROSPHERE [2] array, in its mixed 15 HPGe + 10 LaBr₃(Ce) detector configuration, while charged particles were detected by the SORCERER [3] array. Activation measurements were carried out post irradiation, to measure the ground state lifetimes of the populated nuclei in the Te - Sb - Sn decay chains, through the study of their respective decay curves. The experimental results, in combination with theoretical predictions stemming from a variety of models, among which the recently developed proxy-SU(3) [4], are expected to provide insight on the dynamical shape evolution of the studied isotopes, in a region of the nuclear chart where shape coexistence is predicted to exist.

References

- [1] N. Margineăn et al., Eur. Phys. J. A 46, 329 (2010)
- [2] D. Bucurescu et al., NIM A 837, 1 (2016)
- [3] T. Beck et al., NIM A 951, 163090 (2020)
- [4] A. Martinou et al., Eur. Phys. J. A 57, 84 (2021)