Int. Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" ed. Nikolay Minkov, Heron Press, Sofia 2023

Shape phase transition at N = 90 using wide-range mass measurements at the FRS Ion Catcher

A. Spătaru^{1,2,3}, G. Kripko-Koncz⁴, D. Amanbayev⁴, S. Ayet San Andrés³, D. L. Balabanski^{1,2}, S. Beck^{3,4}, J. Bergmann⁴, P. Constantin¹, T. Dickel^{3,4}, H. Geissel^{3,4}, C. Hornung³, N. Kalantar-Nayestanaki⁵, I. Mardor^{6,7}, N. Minkov⁸, A. Mollaebrahimi^{4,9}, W. R. Plaß^{3,4}, C. Scheidenberger^{3,4}, M. Wasserheß⁴, J. Zhao³

¹Extreme Light Infrastructure – Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Măgurele, Romania

²Doctoral School in Engineering and Applications of Lasers and Accelerators, University Politechnica of Bucharest, Romania

³GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany

⁴II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Germany

⁵ESRIG, University of Groningen, Groningen, The Netherlands

⁶Tel Aviv University, 6997801 Tel Aviv, Israel

⁷Soreq Nuclear Research Center, 81800 Yavne, Israel

⁸Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria

⁹TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Abstract

The transition between the spherical and deformed shapes of the nuclei, known as shape phase transition, can be observed in the evolution of their two neutron separation energies (S_{2n}) with the increase of the neutron number [1]. For such studies, precise measurements of the nuclear masses are crucial. An experiment that took place at the FRS Ion Catcher [2] setup at GSI measured for the first time a wide-range of more than 50 neutron-rich nuclides during one run. They are above Z=50 and around the N=90 region of the shape phase transition and include masses which were measured directly for the first time. The results presented in this contribution include the comparison between the trends of the measured and literature S_{2n} energy, as well as its first derivative (dS_{2n}) . Calculations from a Hartree-Fock based model [3] are compared with results from several other state-of-the-art models and with the measured S_{2n} trends.

References

[1] F. Iachello and N. V. Zamfir, Phys. Rev. Lett 92 (2004) 212501.

[2] W. Plaß et al, Nucl. Inst. Meth. B 317 (2013) 457-462.

[3] N. Minkov et al, *Phys. Rev. C* 105 (2022) 044329.