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Abstract.

Many-body quantum chaos turns out to be a driving force of many impor-
tant phenomena in nuclear structure and nuclear reactions. A review of
“chaotic” physics and its manifestations, selected mostly by a personal in-
terest, is presented.

1 “Regular” and “Chaotic” Dynamics

A standard explanation of nuclear structure starts [1] with theindependent quasi-
particlepicture of fermions in a self-consistentmean field. The next step is re-
lated to themany-bodystates of such a system. The mean field determines the
shape of the system, shell structure of the quasiparticle spectrum, magic numbers
and in some cases predicts the main properties of low-lying states. The indepen-
dent particle model cannot define the ground state of a system with more than
one quasiparticles (quasiholes) with respect to the magic core. Here many op-
portunities forangular momentum couplingproduce degenerate states. Finally,
theresidual interactionbetween the quasiparticles lifts the degeneracies and con-
verts Fermi-gas intoFermi-liquid.

The founders of the shell model [2] assumed that there is an attractivepair-
ing which prefers (for identical particles) pairs with total angular momentum
L = 0 of the pair. There are many signatures of such pairing in nuclear dy-
namics [3, 4] which are kindred to superfluidity or superconductivity. It is usu-
ally assumed that just because of pairing alleven-evennuclei have the ground
state quantum numbersJπ

0 = 0+. Another important part of the effective resid-
ual forces is themultipole-multipole, mainly quadrupole, interaction [1,4]. Dif-
ferent components of the residual interaction generate such features as shape vi-
brations and giant resonances of various types, alpha-correlations in light nuclei
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andquasideuteroncorrelations. The latter are thought to be responsible for the
isoscalar character of ground states of lightodd-oddnuclei which can be repre-
sented by the deuteron-like pair in theJT = 10 state on top of the even-even
core. In heavier odd-odd nuclei the isovector pairing prevails, and the ground
state quantum numbers becomeJ0T0 = 01; in all cases the selected combina-
tions of J0 andT0 satisfy (−)J0+T0 = −1. All those forces are responsible
for the regularfeatures of nuclear dynamics. They create different sorts of el-
ementary excitations; states with certain numbers of such excitons we can call
“simple”. However, the description in terms of independent simple excitations
is approximate. The residual forces contain also manyincoherentamplitudes of
collision-like processes. These processes smear the ground state distribution of
quasiparticles generating an analog oftemperature[5,6].

The many-bodylevel densityof a system of independent excitons grows with
energy exponentially by pure combinatorial reasons. As soon as the residual in-
teraction between the excitons becomes comparable with energy spacings we
come tomixing of simple states. Actual stationary states are very complicated
combinations of quasiparticle configurations. Neutron resonances in heavy nu-
clei are long-lived, practically stationary, states of acompound nucleuswhich
are superpositions of approximately106 independent shell model states. The gi-
ant resonances earlier considered as simple harmonic vibrations are getting frag-
mented over many eigenstates in the interval of thespreading width. The situa-
tion is complicated even more by the possible decay into continuum.

In the region of high level density it is impossible and meaningless to try to
predict the properties of individual states. A small change in the parameters of the
Hamiltonian will make unpredictablelocal variations in phases and amplitudes
of individual components of a wave function. However theglobalfeatures of the
spectrum and observables are stable and can be studied by statistical methods.
This is absolutely necessary for understanding the mechanism of various nuclear
reactions.

On the other hand, characteristics of spectra and eigenstates turn out to carry
important physical information. At this microscopic scale we deal withquan-
tum chaosthat reflects the deepest properties of dynamics related to symmetries
and conservation laws. In the extreme limit these characteristics correspond to
averaging over all Hamiltonians of a certain class, the next step after averaging
over microstates for a given Hamiltonian performed in thermal Gibbs ensembles.
This limit can be described byrandom matrix theory(RMT). Our goal below is
to bridge the gap between local quantum chaos and global properties of strongly
interacting quantum many-body systems, such as atomic nuclei. Many aspects of
our discussion can be applied to other objects as complex atoms and molecules,
clusters and grains of condensed matter, atoms in traps, solid state microdevices
and prototypes of quantum computers. This area of physics is nowadays called
mesoscopic. In the systems which are intermediate between macro- and micro-



V. Zelevinsky 33

world, we are lucky to be able to combine the statistical consideration with the-
oretical and experimental studying of individual quantum states.

2 Spectral Chaos

There are general regularities of spectra in complex systems that approach the
limit of quantum chaos [7–9]. Originally they were considered as specific prop-
erties ofGaussian ensemblesof random Hamiltonian matrices with the distribu-
tion functions of independentuncorrelatedelementsHkl = H∗

lk,

P (H) = const e−Tr(H2)/2a2
. (1)

For systems with time-reversal (T -) invariance the basis can always be chosen
as real, and the matrixH is real and symmetric (Gaussian Orthogonal Ensemble,
GOE); it is clear that the function (1) is invariant under orthogonal transforma-
tions of the basis. Neither this distribution function nor its global predictions (for
example, thesemi-circularshape of the level density for a large dimension) are
realistic. The studies of actual atomic and nuclear systems, as well as the interact-
ing boson model, invariably give the distribution function ofmany-bodymatrix
elements which depends on the representation and in the “normal” mean-field ba-
sis close to the exponential. The level density in the restricted shell model space
is closer to the Gaussian [10] or binomial [11] rather than to the semicircle.

Moreover, the assumption of uncorrelated matrix elements is certainly wrong
for the interaction of therank (number of particles taking part in the acts of the
residual interaction) significantly lower than the particle number. At normal nu-
clear or atomic density two-body processes (rank 2) are the most important ones.
A given two-bodyprocess can take place for any spectator configuration of re-
maining particles so that themany-bodymatrix elements carry strong correla-
tions. Apart from that, the exact (angular momentum) or nearly exact (parity,
isospin)conservation lawsare preserved even with chaotic interactions. The
GOE ignores all such constraints except for energy conservation. Meanwhile,
full chaos is not possible here since the Hilbert space is decomposed into non-
mixing classes which are governed by the same Hamiltonian. Therefore the dy-
namics in different classes are expected to be correlated.

All these essential features of complicated many-body systems do not cru-
cially influence the local spectroscopic properties governed by the strong mixing
of close states. Starting with noninteracting particles in a mean field, we can con-
sider the energy terms as functions of the overall interaction strengthλ. At λ = 0
the levels correspond to various partitions of shell model space. At this point the
dynamics are integrable and many levels for the same configuration but different
spin-isospin quantum numbersJT are degenerate. Already at weak interaction
the levels are mixed and the degeneracy is removed. For two closest neighbors at
an initial distanceε the non-zero mixing matrix elementV implies the increase
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of the spacing to

s =
√

ε2 + |V |2. (2)

For an ensemble of multiple crossings in aT -invariant system we considerε and
realV as random parameters with a distribution functionP (ε, V ). Introducing
polar coordinates in the(ε, V )-plane, we have the spacing distribution function

P (s) =
∫

dε dV δ(s−
√

ε2 + V 2)P (ε, V ) = s

∫
dφP (s cos φ, s sinφ). (3)

Thus, at small spacingss, the levelsrepel linearlyif the probabilityP (0, 0) is not
singular. The singular behavior likeP (s) ∼ s ln(1/s) can occur, for example,
in sharply cut band matrices [12].

In realistic many-body systems (Figure 1) the linear repulsion regime starts
at a sufficiently high level density already at a relatively weak interaction,λ ≈
0.2. Using the scaled spacing variable,s → s/D, whereD is an average local
spacing,P (s) grows linearly ats → 0, reaches its maximum nears ≈ 1, and
then goes down. TheWigner surmise

PW (s) =
πs

2
e−(π/4)s2

(4)

approximates very well the GOE result. This is valid only forpure sequences
of levels with identical exact quantum numbers. A superposition of sequences
from different symmetry classes rapidly comes [13] to the Poisson distribution
P (s) = exp(−s) with a maximum ats → 0 that was discussed for nuclear spec-
tra as early as in 1939 [14]. An interesting yet unsolved problem is related to the
transition scenario from the Poisson case to the chaotic Wigner case induced by
a perturbation that destroys symmetry and mixes unperturbed states. This ques-
tion is crucial for the development of quantum computing where the elementary

Figure 1. The nearest level spacing distribution forJπT = 0+0 states in thesd-shell
model of 28Si as a function of the overall strength of residual interactions, histogram;
Wigner surmise, solid line; Poisson distribution, dashed line.
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units (qubits) should interact in order to process the signal but weakly enough in
order to keep the coherence of entangled states.

In the case of the violation ofT -invariance, the matrix elements are in gen-
eral complex, and the extreme chaos should be described by the Gaussian Uni-
tary Ensemble. In this case the level crossing would require the simultaneous
vanishing of ReV and ImV , and instead of (3) we arrive at the quadratic repul-
sion,P (s) ∼ s2, at smalls. This argument was used for a search ofT -violation
in nuclear forces [15]. The situation is unusual: we are looking for the violation
of fundamental symmetries via the finest details of complex spectra. The aver-
aging which supposedly gets rid of all specificity of the system clears the way
to basic laws of nature. Regrettably, the available statistics are too poor to make
this search successful. Another limitation comes because all excited states are
quasistationaryso that their widthsΓ, or energy uncertainty, change the spectral
statistics ats ≤ Γ without any dynamicT -violation.

Chaotic mixing makes the typical energy spectrum more rigid (anaperiodic
crystalof levels). There are convenient measures ofspectral rigidity, such as

∆(L) = 〈minA,B

∫ x+L

x

dε

L
[N (E)−AE −B]2〉x. (5)

HereN (E) is the cumulative number of unfolded (measured in units of the local
spacingD) energy levels, and∆(L) gives the deviation of this number from the
best straight line fit averaged over overlapping segments of unfolded lengthL.
For Poisson level statistics,∆(L) = L/15 grows linearly with the lengthL while
in the chaotic case with a rigid level ladder,∆(L) shows only a slow logarithmic
growth. In a large-scale shell model diagonalization one can confirm [16] chaotic
behavior of spectral rigidity up to very largeL ≈ 2500.

One can use spectral statistics in the analysis of mixed spectra. For example,
thermal neutrons reveal well known narrowresonancesin scattering off heavy
nuclei. This is a typical mesoscopic region where one can study individual quan-
tum states of a high degree of complexity. The strong resonances correspond to
s-wave neutrons and, for an even-even target, have quantum numbersJπ = 0+.
But for odd-A targets with the ground state half-integer spinJ0 ans-wave res-
onance may haveJ = J0 ± 1/2. The spin value remains undetermined in ex-
periments without polarization observables. However, the spectral statistics are
aware of the mixed character of the level sequence and help determine the frac-
tion of two possible spinsJ . The number of subsequences would be even larger
if the K-quantum number, the total spin projection along the symmetry axis of a
deformed nucleus, would still be conserved at excitation energy of neutron res-
onances. Thus, for the important case of235U with Jπ

0 = 7/2− the ground state
hasK0 = J0 = 7/2. Thes-wave neutron resonance withJ = 3 can have only
K = 3 but for J = 4 two values,K = 3 andK = 4, are allowed so that the
spectrum may contain three subsequences. The question ofK-conservation is
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still a subject of experimental and theoretical discussion [17].
Many authors studied spectra in various nuclear models and with real data.

In spite of some deviations, especially at low energies, the nuclei seem to reveal
a general agreement with the RMT at a rather weak interaction strength. Spectral
statistics are insensitive to the details of dynamics and do not require the original
assumptions of the RMT to be fulfilled. The local spectra of complex systems
are close to universality determined by the most general symmetry properties.

3 Complexity

In RMT all stationary states are equally complex in almost all representations.
Let us take an arbitrary basis|k〉 and express the exact eigenstates|α〉 as super-
positions

|α〉 =
∑

k

Cα
k |k〉. (6)

The amplitudesCα
k form a unitary (orthogonal for theT -invariant case) matrix.

If we loosely defineNα as a number ofprincipalcomponents, i.e. those carrying
the lion’s share of the total normalization,

∑

k

wα
k = 1, wα

k ≡ |Cα
k |2, (7)

we expect that the typical value of the weight of a principal component iswα
k ≈

1/Nα. We can use the numberNα to quantify thedegree of complexityof the
eigenstate|α〉 with respect to a given basis|k〉.

In Gaussian ensemblesNα is the same for all states and coincides with the
matrix dimensionN . Indeed, in the GOE we have the joint probability distribu-
tion of components of any eigenstate which is invariant under orthogonal trans-
formations and reflects only the normalization requirement,

P ({Cα}) = δ(
∑

(Cα)2 − 1); (8)

typical eigenvectors are uniformly spread over the surface of theN -dimensional
sphere. This leads to the distribution function of a given component

P (Cα
k ) = const[1− (Cα

k )2](N−3)/2, (9)

which is equivalent to the Gaussian distribution for largeN ,

P (Cα
k ) =

√
N

2π
e−(N/2)(Cα

k )2 , (10)

with the mean square value1/N as expected.
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With the Gaussian distribution of the components, the weights are distributed
according toPorter-Thomas(PT),

P (w) =
1√

2πww
e−w/2w, w =

1
N

. (11)

It is well known that the reduced neutron widths of neutron resonances indeed are
distributed close to eq. (11). The neutron decay is the physical tool implement-
ing the analysis of the wave function of a quasistationary state by singling out
a component corresponding to the slow neutron in the continuum and the target
nucleus in its ground state. This is one typical component and we expect that its
distribution function will be generic one. We speak here aboutreducedwidths
with the threshold energy dependence (∼ √

E for s-wave neutrons) taken out;
this dependence comes from the phase space restrictions rather than from the in-
trinsic matrix elements. This is similar to the level unfolding used in Section 1:
we need to separate a global secular behavior from local properties. Since the
complexity is basis-dependent we need to select a basis for comparing various
wave functions. A natural choice for a many-body system is given by themean
field that is what remains after averaging out incoherent collision-like processes.
This choice accomplishes the above mentioned separation. Actually, the mean
field equations can bederivedfrom the assumption that intermediate states in the
nonlinear operator equations of motion are chaotic and have random phases [18].
Other choices of the basis can provide additional information.

The same PT distribution is expected to be valid for the strengths of spe-
cific operators, for example for a multipole transition from the ground state to
a chaotic state with corresponding quantum numbers. The assumptions of the
Wigner nearest level spacing distribution (4) and the PT distribution of strengths
serve as a foundation of powerful statistical methods used by experimentalists
[19] in order to recover the missing strength hidden in fine structure levels which
are invisible in experiments with a relatively poor resolution.

Starting with a reference basis|k〉 of noninteracting quasiparticles and
switching on the residual interaction, multiple avoiding crossings supply the
wave functions|α〉 with new componentsCα

k . A convenient measure of thede-
localizationof the eigenstate|α〉 in the given basis isShannon (information) en-
tropy

Iα = −
∑

k

wα
k ln wα

k . (12)

The starting (λ = 0) entropyIk vanishes as for any wave function in its own
basis. Asλ grows, so does information entropy. For a state uniformly mixed
among all basis states, all weightsw = 1/N , and information entropy reaches
its maximumln N . This wave function is fully delocalized, its delocalization
length defined asNα = exp(Iα) equals the space dimension. However, even
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with the complete mixing, the orthogonality conditions do not allow all states to
haveNα ≈ N . The fluctuations imminent to the GOE reduce the average value
of Nα to 0.48 N .

The most important feature observed in shell model calculations is a smooth
dependence ofIα on excitation energy. In the same narrow energy window the
initial basis can place nearby the states of a very different nature. In the mixing
process their entropies could remain different. Instead the adjacent states “look
the same” [20]. For a sufficient interaction strength, they are equilibrated and
entropies are equalized around the same value ofλ that corresponds to the onset
of the chaotic spectral statistics (the functionP (s) andNα turn out to be strongly
correlated [21]). The values ofIα still continue to grow withλ even beyond this
equilibration, approaching the GOE value at high level density.

We mentioned earlier that the numberNα, as a measure of a number of princi-
pal components of the wave function, determines typical weights of components
and probabilities of processes. But it does not take into account relativephasesof
the components and, strictly speaking, reflects delocalization rather than chaotic-
ity. Collectivestates, beingcoherentcombinations of many simple excitations,
can have relatively large entropy. However, at high level density the collective
states as giant resonances are mixed with complicated states of the same sym-
metry acquiring thespreading width. In the end the exact eigenstates show only
a fragmented excess of collective strength in this region. This reminds the phe-
nomenon ofscarsknown from one-body chaos [22]: a remnant of a collective
mode marks the complicated states.

A more dangerous aspect is related to the evolution, or phase transitions of the
mean field with excitation energy that would be better accounted for by chang-
ing the reference basis. In such cases information entropy in the fixed basis does
not reflect properly the complexity of the state. Here it may be useful to look
at correlational(von Neumann) entropy [23] defined through the response of a
state|α〉 to an external random perturbation. Letλ be a random parameter in the
Hamiltonian. The energy termsEα(λ) and the coefficientsCα

k (λ) in anarbitrary
basis|k〉 are random quantities, and we can form adensity matrixof a given state

ρα
kk′ = Cα

k Cα∗
k′ (13)

where we average over the distribution function of the noiseλ. This density ma-
trix defines correlational entropy

Sα = −Tr(ρα ln ρα) (14)

which is now basis-independent and contains information on phase relations.
With fixed parametersλ, the density matrixρα has one nonzero (equal to 1)
eigenvalue which projects out the state|α〉 whereas other eigenvalues vanish.
This is apurequantum state, entropySα = 0, and(ρα)2 = ρα. In the presence
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of noise we deal with themixedquantum state, andρα acquires nonzero eigen-
values between 0 and 1; alwaysTr ρα = 1. In perturbation theory every new
order brings in a new nonzero eigenvalue and increases entropy. This entropy is
closer to statistical entropy of a system in the environment and in some cases the
noise leads to a thermal equilibrium ensemble.Sα is sensitive to phase transi-
tions in the system [24]. It is well known that the notion of entropy refers not
to a specific quantity but rather to a family of concepts [23], and various mem-
bers of this family can be useful in various circumstances. In particular, one can
relate information entropy to thermodynamics and establish a new paradigm of
statistical mechanics of finite quantum systems [5,16,25,26].

4 Enhancement of Perturbations

Perhaps, the most practically important consequence of the chaotic mixing is the
enhanced sensitivity to weak perturbations. The source of this enhancement can
be seen in theN -scalingof the complexity [27]. Let us consider matrix elements
of a simple, for example one-body,∼ a†a, operatorQ̂ between a chaotic state
|α〉 and a “simple” state|k〉,

〈k|Q̂|α〉 =
∑

k′
Cα

k′〈k|Q̂|k′〉. (15)

The selection rules for the operatora†a single out few initial states|k′〉 for a given
final state|k〉. The effective factorν coming from the presence of such states is
determined by the geometric coupling of Slater determinants for the given shell
model partition into a normalized state with given total spin. If the single-particle
matrix elements of the operator̂Q can be estimated by their average valueq, we
come to

〈k|Q̂|α〉 ≈ qν√
Nα

, (16)

whereNα is a complexity of the state|α〉. A very similar estimate can be ob-
tained for the transition between two chaotic states of a similar degree of com-
plexity N ,

〈α|Q̂|β〉 =
∑

kk′
Cα∗

k Cβ
k′〈k|Q̂|k′〉. (17)

Again here exist a tight correspondence between the states|k〉 and|k′〉. If the
components of complex states are uncorrelated, we estimate the remaining sum
as a random walk and again arrive at

〈α|Q̂|β〉 ≈
√

N

(
1√
N

)2

qν =
qν√
N

. (18)
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Thus, typical matrix elements including simple operators and complicated states
are suppressed∼ 1/

√
N .

The perturbation̂h induces an admixture to the wave function,

|Ψ〉 → |Ψ′〉 ≈ |Ψ〉+
〈Ψ′|ĥ|Ψ〉

∆E
, (19)

where∆E is an unperturbed level spacing. Comparing the mixing of simple
states with that in the chaotic region we see the interplay of two opposite trends:
reduction,∼ 1/

√
N , of the mixing matrix element between complicated states,

and, at the same time, increase of the level density and therefore decrease of the
energy denominator∆E. The mixing of adjacent states (∆E ∝ 1/N ) is ex-
pected to beenhanced∼ √

N compared to the mixing among single-particle ex-
citations. Thisstatistical enhancementof perturbations is another expression of
quantum chaos. The brightest manifestation is seen inparity (P) violation. P-
odd forces have their origin in fundamental electroweak interactions. Under nor-
mal circumstances, their effects are of the order of10−(7−8) as seen, for example,
in largeβ-decay lifetimes. The experiments with polarized slow neutrons show
a different picture. The cross sections for scattering of neutrons of left and right
helicity differ because ofP- nonconservation. But, instead of being∼ 10−7,
this difference in some nuclei reaches 10% of the average cross section; the nu-
clei with the large effect were predicted theoretically [27].P-nonconservation
mixesp- ands-wave neutron resonances, i.e. chaotic wave functions of com-
plexity N ∼ 106. The mixing operator is aP-violating part of the mean field in
a form of the anticommutator[(~σ · p), ρ(r)]+. Our estimates predict the statisti-
cal enhancement of the order103. Another factor comes from thekinematicen-
hancement: the asymmetry is proportional to the ratio ofs- andp-neutron widths
which, near threshold, is also of order103.

If the statistical mechanism is correct, one should expect the randomsignof
the asymmetry which is indeed observed for nearly all cases. The notorious ex-
ception is232Th where all ten resonances with significant asymmetry have the
same sign. The reason might be related [28] to the structure of this nucleus. If
it has octupole deformation at energies near neutron threshold, theP-doublets
should exist. They can be mixed by the weak interaction together with Corio-
lis forces in the deformed rotating nucleus; being in a sense mirror reflections
of each other they have fully correlated chaoticity. Hypothetical forces simulta-
neously violatingP- andT -symmetries should be especially enhanced in such
cases since their mixing does not require a mediator as Coriolis interaction.

Even more impressive manifestation of statistical enhancement is seen in
fission of heavy nuclei by polarized neutrons[29]. Here the signature ofP-
violation is the asymmetry(~σ ·Pf ) of a fission fragment with respect to the di-
rection of the primary neutron spin. Surprisingly, a small initial asymmetry of
a single neutron helicity is transformed in an ordered motion of hundreds of nu-
cleons. The observed asymmetry is on the level of10−4 because here there is no
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kinematic effect. The mixing of the resonances of opposite parity again works
at thehot stage of a compound nucleus [27]. The fissioning nucleus is going
through a pear-shaped configuration where the memory ofP-nonconservation
is transformed into the asymmetry of fragment motion. The asymmetry is nearly
independent of the final mass asymmetry or kinetic energy distribution - all those
characteristics are decided on thecold stage of the processafter the parity mix-
ing has already occurred. Since at this point the original excitation energy is con-
verted into deformation, there are only few open fission channels so that the final
result is not averaged out.

5 Strength Function

TheN -scaling is important for understanding the fragmentation of basis states
|k〉 over eigenstates|α〉. In the time-dependent formulation, this is seen asdamp-
ing of an initial state. The time scale is set by thespreading widthof thestrength
function

Fk(E) =
∑
α

wα
k δ(E − Eα) ≡ 〈k|δ(E − Ĥ)|k〉. (20)

The Fourier-component of the strength function,

fk(t) =
∫

dE e−(i/~)EtFk(E) ≡ 〈k|e−(i/~)Ĥt|k〉, (21)

is the amplitude ofsurvivalof the original state|k〉. The centroid of the strength
function,

Ēk =
∫

dE EFk(E) = 〈k|Ĥ|k〉, (22)

is just a diagonal matrix element of the Hamiltonian, while the energy dispersion
σk of the initial state is the second central moment,

σ2
k =

∫
dE (E − Ēk)2Fk(E) = 〈k|(H − 〈k|H|k〉)2|k〉. (23)

The strength function is normalized,
∫

dE Fk(E) = 1, whereas the sum over the
basis states,

ρ(E) =
∑

k

Fk(E) = Tr{δ(E − Ĥ)}, (24)

is the total level density which justifies a frequently used name of the strength
function aslocal density of states.

A preliminary knowledge about the strength functions of basic states can be
acquired prior to the diagonalization of the matrixĤ. Thus, the centroid is given
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by eq. (22), and the dispersion (23) can be calculated as a sum of off-diagonal
matrix elements,

σ2
k =

∑

k′ 6=k

|〈k′|Ĥ|k〉|2. (25)

When the shell model states|k〉 areJT -projected combinations of Slater deter-
minants of them-scheme, the quantityσk only weakly fluctuates within a given
JT -class and can be approximated by a constantσ̄. This is a result ofgeometric
chaoticityof vector coupling of individual spins and isospins. An approximately
constant value ofσk leads one to an idea of a generic shape of the strength func-
tion for complex states of a given class. The formal calculation of the strength
function proceeds as follows [1]. Let the matrix obtained by the elimination of
the state|k〉 be diagonalized. This gives the set of the intermediate eigenstates
|β〉 and their energiesεβ with the level density quite close to the full one (only
one state was excluded). The excluded state|k〉 is coupled to the set|β〉 by the
matrix elementsVkβ of residual interaction transformed to the new basis. The
secular equation for exact energiesEα has the form

Eα − Ēk −
∑

β

|Vkβ |2
Eα − εβ

= 0. (26)

If a nearly equidistant spectrumεβ stretches far away on both sides of the centroid
Ēk with a mean spacingD and weakly fluctuating coupling strengths|Vkβ |2, eq.
(26) predicts the Breit-Wigner (BW) shape of the strength functionFk(E) with
thegolden rulespreading width

Γs = 2π
|Vkβ |2

D
. (27)

The widthΓs indicates theexponential decay, ∼ exp(−Γst), of the initial non-
stationary wave packet|k〉. These assumptions and related results can be called
thestandard modelof the strength function.

Due to theN -scaling, the spreading width (27) is a very stable characteris-
tic of the many-body Hamiltonian. The density of states1/D increases∼ N
while the matrix elements decrease∼ 1/

√
N . Therefore the quantities that de-

pend strongly on excitation energy are eliminated, and the spreading widthsat-
uratesas soon as the system is in the chaotic regime, on the level predetermined
by the residual interaction. One of the examples is given by theisobaric analog
states[30]. Their spreading widths associated with the mixing of the states of
isospinT> with numerous complex states of smaller isospinT>−1 vary very lit-
tle in the region of 50-100 keV for different nuclei, excitation energies, spins, par-
ities and isospins (one can notice only gradual increase for heavier nuclei). The
intrinsic widths of giant dipole resonances in heated nuclei apparently are also
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saturated as a function of excitation energy in heavy ion reactions, although here
the situation is more complicated both experimentally (effects of the entrance an-
gular momentum) and theoretically (sensitivity to the nuclear shape which also
fluctuates with temperature).

The BW shape of the strength function cannot be exact since it corresponds to
the infinite energy dispersion (23) and precisely exponential decay. But for a rel-
atively weak coupling to the environment and in all situations, where the wings
of the strength are of minor significance, the standard model gives a good approx-
imation. It becomes invalid [31] when the state iscoupled stronglyto the envi-
ronment, and the spreading widthΓ increases beyond the regionδE where the
coupling matrix elements and/or level density are approximately constant. The
shape is getting closer to Gaussian [32, 33], and the spreading width can be es-
timated asΓ ≈ 2σ̄ in terms of the energy dispersion (23). The saturation of the
spreading width still takes place but the dependence on the interaction strengthλ
changes fromquadraticin the standard model (27) tolinearin the strong coupling
regime. This evolution can be parameterized by a simple interpolation

Γ(λ) =
aλ2

1 + bλ
(28)

where the parametersa andb can be found directly from the limits of weak and
strong coupling. Eq. (28) describes very well the results of the exact shell model
diagonalization [33].

The deviations from the standard model and BW shape of the strength func-
tion are amplified in the widthsΓn of the multiple giant resonances[32]. The
arguments based on the standard model predictΓn/Γ1 = n because of the
Bose-factor of induced radiation in the matrix elements that couple ann-phonon
state with the background. This agrees with the convolution ofn single-phonon
strength functions of BW shape. The observed widths of double giant dipole ex-
citations are significantly narrower,Γ2/Γ1 ≈ 1.4 ÷ 1.5. This is expected in
the strong coupling regime when the spreading width has a linear dependence on
coupling matrix elements and, consequently, on the Bose factor,

Γn =
√

n Γ1. (29)

Phenomenologically, it follows from the convolution of the two Gaussians when
the widths are added in quadratures. Even if the system is in the intermediate
regime between weak and strong coupling, the convolution amplifies the devia-
tions from BW shape and, according to the central limit theorem, approaches the
Gaussian case.

6 Exponential Convergence

The realistic shell model case is close to the strong coupling regime and Gaussian
shape [33]. However, the remote wings fall off slower displaying theexponential
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drop-off. This means that in the tails the strength function is exponentially small
being proportional to the entire remaining strength,

F (E) = const
∫ ∞

E

dE′ F (E′) ; F (E) ∝ e−const·E . (30)

The energy wings reflect the initial stage of the nonexponential decay of the sur-
vival amplitude (21) when|fk(t)|2 ≈ 1 − σ2

kt2. Moreover, this should be a
generic property since the energy dispersionσk is almost constant.

With exponentially small remote admixtures, the energy of a low-lying state
can be derived in a good approximation by a reasonabletruncationof the huge
Hamiltonian matrix. Since the spreading width in the strong coupling regime
Γ ≈ 2σ̄, we can start with a truncation on the level of(3÷ 4)σ̄ from the original
state. In order to not violate the shell model symmetry we need first to establish
spectroscopic centroids of the partitions, and then include in the primary diago-
nalization all partitions (in their entirety) within a desired distance. Indeed, this
approximate procedure [34] gives the energies in the limits of few hundred keV
from the exact value. The approximate wave functions also have a large,∼ 90%,
overlap with the exact solution.

Increasing the size of the matrix with new partitions, we invariably see, in
agreement with the above arguments, that the energy eigenvalues monotonously
converge to exact numbers the convergence being pureexponential. This prop-
erty was checked both for random matrices and for realistic shell model cases
[35]. This opens the way to huge shell model spaces by exact diagonalization
of few progressively truncated matrices, still of a tractable dimension, with the
following exponential extrapolation. Such a procedure was implemented forfp-
shell nuclei [36]. It was found that the regime of the exponential convergence

0.01

0.1

1

10

0 50000 100000 150000 200000

E
g.

s.
 +

 1
10

.0
48

 (
M

eV
)

n = no of basis states

1.82*exp(-2.05e-5*n)

Figure 2. Shell model calculation of the ground state energy in49Cr and exponential fit
as a function of the increasing dimension; notice the faster convergence at the initial stage
(onset of chaos).



V. Zelevinsky 45

indeed starts at a truncation size of(3÷ 4)σ̄, see Figure 2. The expectation val-
ues of observables can be also found with the exponential extrapolation although
here one has to be careful taking into account the specific selection rules for dif-
ferent operators which can create anon-compactstrength function with several
maxima in different energy intervals.

The exponential convergence was observed in various physical problems in-
volving spaces of a large dimension. The mathematical justification can be given
with the help of the Lanczos algorithm which reduces the original matrix to a
tridiagonal one where one should compare the asymptotics of diagonal and off-
diagonal elements [35].

7 Ordered Spectra out of Chaos

We have already mentioned that conservation laws and the two-body nature of
interaction introduce the correlations which are absent in the pure RMT. In a re-
stricted orbital space there are few independent interaction parameters, namely
reduced matrix elementsVLt(12; 34), whereL andt are total spin and isospin of
the pair, respectively. There are 63 such matrix elements in thesd-shell model
space. These parameters, along with the single-particle energies, govern the dy-
namics in allJT -classes introducing correlationsbetween the classes, a new ele-
ment in theory of many-body quantum chaos. The simplest manifestation of such
correlations is the presence of long rotational bands in nuclear spectra. There is
an idea by Mottelson that even in a compound nucleus, where the typical states
are chaotic, the strong preferential intraband transitions may exist. With strong
mixing between adjacent states with the same quantum numbers, one would ex-
pect that a rotational state will emitγ-rays to many final states of another class
creating aturbulentdeexcitation flow. However, if the chaotic mixing in the dif-
ferentJ-classes is similar, it may happen that the rotational state still has a strong
overlap with its counterparts on the next step keeping an almostlaminarypat-
tern of few parallel deexcitation paths. Suchcompound bandswere seen in shell
model calculations but still remain to be seen in nature.

The ground state spins of all even-even nuclei are known to haveJπ = 0+

and the lowest possible isospin. This is traditionally thought [2] to follow from
the strong attractive pairing. The unexpected results of ref. [37] made this con-
ventional wisdom questionable. The shell model calculations with degenerate
single-particle energies andrandominteraction matrix elementsVL lead to a high
probability of the ground state spinJ0 = 0. This puzzle attracted attention of
many authors who studied the problem in detail [38–41] and showed that the con-
clusion is insensitive to the specific properties of the random ensemble. Similar
results are obtained for interacting bosons [42]. Unfortunately, many numerical
simulations which show new aspects of the problem give no physical insight in
what is going on. Below we briefly list different ideas, with their pluses and mi-
nuses.
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Figure 3. Fraction of ground states with spinJ in the uniform ensemble of random two-
body interactions forA = 6 particles on aj = 15/2 level, solid line; the same random
ensemble without pairing,V0 ≡ 0, dashed line; multiplicityN (J), thin line.

Multiplicity N (J) of states with spinJ does not give any preference toJ =
0. Using the standard idea of random coupling of individual spins, the result can
be well approximated by

N (J) ≈ const · (2J + 1)e−J(J+1)/2I , (31)

whereI is a spin-cutoff factor depending on available single-particle states. The
maximum of multiplicity never comes toJ = 0, see Figure 3.

A width σ(J), a second moment of the level densityρJ (E), can be found by
methods of statistical spectroscopy [43] being usually slightly greater forJ = 0
than forJ = 2. However this, in turn, requires its own physical explanation.
Moreover, the excess of widthσ(0) is too small to create the observed predomi-
nance ofJ0 = 0. In addition, high values ofJ have, as a rule, even larger widths.

Effective pairing correlationsmight appear as a result of averaging effects
of random interactions. However, the preponderance ofJ0 = 0 changes very
little if the pairing component of the two-body interaction is set to zero in the
ensemble, Figure 3. The ground state wave functions are far from those expected
for developed pairing correlations; they are close [44, 45] to the chaotic RMT
limit, eq. (9), see Figure 4. The shell model calculation in thesd-space with
random interactions discovered [45] in some cases a slightly enhanced overlap
of the ground states with the realistic paired states. This can be traced to theoff-
diagonalpairing matrix elements. In the second order their effect does not depend
on sign and brings the states with the elements of pairing correlations down. In
the model where those random off-diagonal elements are the only non-zero parts
of the residual interactions, the probability ofJ0 = 0 is higher than90%.



V. Zelevinsky 47

Figure 4. The distribution of overlapsx = |〈0̃|0〉|2 of the ground states|0〉 with J0 = 0
for a Gaussian ensemble with the fully paired state|0̃〉 of seniority 0, for 4 (lower part)
and 6 (upper part) particles, shaded histogram; the same for the additional constraint of
the first excited stateJ = 2, open histogram (the excess is a measure of non-statistical
effects); random matrix prediction, solid line.

Matrix elementsVL, taken alone (at a negative value), determine the ground
state spinJ0(VL). The fraction of matrix elements leading toJ0 = J can be
taken [46] as a measure of total probability of this ground state spin. This obser-
vation is valid [47] in the rare cases when the quantum numbers, such asJ and
seniority, uniquely characterize the state so that the wave function is known and
total energy is alinear functionof VL (even then the physical foundation of the
result is still missing). This sampling of the corners of the parameter space is not
sufficient in realistic cases requiring the diagonalization of the matrix [48].

Collective strengthwas claimed [37, 38] to be enhanced for the multipole
transitions from the ground state with random interactions. This was a result of
the maximizing the effect by the construction of a special transition operator for
each copy of the ensemble. With the fixed multipole operator, the collectivity
does not appear [45].

Time-reversalinvariance is spontaneously broken in the ground state with
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J0 6= 0 by a choice of the projectionM . The rotation restores this invariance
serving as a Goldstone mode. From this viewpoint, the state withJ = 0 is sin-
gled out. This is not related to directT -violation [39]. The probabilities do not
change after theT -odd (imaginary) random interaction is explicitly introduced
since the odd orders are averaged away.

A boson representationof fermionic pairs,(a†a†)LΛ → bLΛ, reveals an ef-
fect [44] favorable forJ0 = 0. Such an approximation, the first term of a regular
boson expansion, when the matrix elementsVL play the role of single-boson en-
ergies, works if the occupation of the shell is not very large. Then the ground
state is a condensate of bosonsbL for the pair spinL with the strongest attractive
VL. For a single-j level, there arek = j + 1/2 even values ofL allowed by
Fermi-statistics. The probability forV0 to be the most negative is∼ 1/k. There-
fore, independently of multiplicityN (0), the probability ofJ0 = 0 is greater
than1/k. For the cases when the strongest attraction occurs forL > 0, the con-
densed bosons have another chance to couple toJ = 0. The next terms of boson
expansion contain theboson pairingwhich acts coherently and brings the states
with J = 0 down, lifting the degeneracy of the condensate states and increasing
the total probability forJ0 = 0. Still this mechanism is not sufficient for explain-
ing the predominance ofJ0 = 0 since the fraction1/k decreases as the fermionic
space grows.

The maximum spin ground state, a ferromagnetic case, has in many cases an
enhanced probability as well [39,44], in particular if one takes into account that
its multiplicity is quite low (there is only one state withJ = Jmax in a single-j
case). This implies the crucial role of geometric effects.

The effective Hamiltonianafter averaging the results of many realizations can
depend [44] only onconstants of motion, as particle number, spin and isospin (see
similar arguments for quantum dots [49]). At small values ofJ andT , it should
be an expansion of the form

Ĥeff = H00 + H20J2 + H02T2 + H22J2T2 + H40J4 + . . . (32)

If the series converges, in average we should have a “rotational band” with ran-
dom moments of inertia inJ andT . The results are determined by the sign of
the moments of inertia. The areaH20 > 0 determines the domain ofJ0 = 0 (an
antiferromagneticcase). The coefficientsHpq depend on the particle numberA.

The idea of geometric chaoticity[44] helps in understanding physical reasons
for the predominance ofJ0 = 0 states. One can estimate the coefficients of the
effective expansion (32) for Fermi-gas. Assume that in average the interaction
does not create a significant mean field, and the equilibrium (thermodinamically
favorable) distribution of the particles is the one that maximizes single-particle
entropy under necessary constraints. Take a representative state with the maxi-
mum projectionM = J . The equilibrium (in a single-j case) corresponds to the
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occupancies

nm = [exp(γm− µ) + 1]−1, (33)

where the chemical potentialµ and the effective magnetic field, or the cranking
frequency around the symmetry axis,γ, are fixed by the requirements

∑
m

nm = A,
∑
m

mnm = M. (34)

The statistical average of the microscopic Hamiltonian over the particle distribu-
tion (33) is

〈Ĥ〉 ≈
∑

LΛ

VL

(
CLΛ

mm′
)2

nmnm′ , (35)

whereCLΛ
mm′ are Clebsch-Gordan coefficients. Expressing the Lagrange multi-

pliers in terms ofA andJ (no isospin in this model) we come to the effective
form (32). In this approach〈Ĥ〉, and therefore the coefficientsHpq, arelinearin
VL and, in the quadratic approximation to (32), we obtain the50% probability
of J0 = 0, regardless of the multiplicityN (0). For J ≈ Jmax the expansion
(32) is invalid but a consideration is easy because the wave function is unique.
Taking a correction for higher than quadratic terms (the series indeed converges
rapidly) we obtain the prediction for theJ0 = 0 probability in qualitative agree-
ment [44] with calculations for the ensemble of random interactions. Thus, cor-
rect estimates of probabilities for the ground state spin follow from a simple sta-
tistical approach. Details of geometry ignored in this approximation lead to the
non-monotonous behavior. The probability forJ0 = Jmax gradually decreases
for larger spaces.

The value of ground state energy predicted by eq. (35) with the occupation
numbers (33) is clearly correlated with the actual value from the exact diagonal-
ization [44]; a good agreement exists forJmax but for low spins there are still
systematic deviations. In this simplest approach, possible mean field effects are
neglected. Although in average the fields due to different components of random
interactions cancel, the fluctuations are important. In a refined theory we need to
take into account the effective deformation, specific for each copy of the ensem-
ble, that splits single-particle levels. In a single-j model and in keeping with the
statistical approximation (35), the deformed spectrum is given by

εm = 2
∑

LΛ

VL

∑

m′

(
CLΛ

mm′
)2

nm′ , (36)

which, after a self-consistent correction tonm, introduces nonlinear correlations
neglected in the oversimplified assumption (33). Using in the statistical approx-
imation (35) instead of (33) the occupation numbersnm from the actual wave
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Figure 5. Average over the ensemble occupation numbers of the magnetic substates for
6 particles,j = 15/2, J = M = 6, given by the statistical approximation, eq. (33),
dashed line, and from actual data, solid line.

function, Figure 5, we considerably improve the relation between the model and
numerical experiments. The mean field also explains similar regularities ob-
served for randomly interacting bosons [41].

New effects are brought in by isospin [48]. The lowest isospin value is al-
ways preferred for the ground state, in analogy to what is observed in actual nu-
clei. This is usually attributed to a stronger attraction in n-p pairs compared to
pairs of identical particles. The interplay of this quasideuteron effect and usual
pairing leads to the ground state quantum numbers ofN = Z odd-odd nuclei
which satisfy the simple rule(−)J0+T0 = −1 as if the last n-p pair were added
to the even-even core withJ0T0 = 0. The random interaction ensembles give
practically the same results.

An analogy to the systems of interacting spins 1/2 (magnetic materials, quan-
tum glasses and quantum computer media) is especially insightful. If the spin-
spin interaction forn spins is assumed in a standard form

Hs =
∑
12

J12(s1 · s2) (37)

with random exchange integralsJ12, the ground state spin is also random, in-
creasing in average∝ √

n [50]. However, if the system is considered as a spe-
cific case of the shell model with many double-degeneratej = 1/2 levels, the
result is very different: the fraction ofJ0 = 0 is growing to nearly 100% [51].
In the case (37) the interactions in singlet and triplet states are firmly correlated
being determined for each pair by a single exchange integral: the ratio of ener-
gies 3:1 is fixed by spin geometry. In the shell model these quantities are uncor-
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related. In such a situation, the main contribution comes from the off-diagonal
matrix elements as it was mentioned above in relation to the pairing effects. For
many levels ofj = 1/2, the off-diagonal transitions prevail driving the fraction
of ground state spins to 1.

Coming back to the question of the reasons determining the ground state
quantum numbers in complex nuclei, we need to correct the standard point of
view. Certainly, isovector and isoscalar pairing effects push down energies of
the states with lowestJ andT . However, the geometrical chaoticity plays also
an important role that is not properly evaluated in the textbooks.

8 Conclusion

Avoiding an unnecessary repetition, I would like just to stress that ideas of quan-
tum chaos penetrate various domains of nuclear physics. Nuclear symmetries,
local spectral statistics, global behavior of level densities, strength functions and
damping of collective modes, response to weak perturbations, thermal equilib-
rium and phase transitions, Fermi-liquid description, even regularities of ground
states - all main topics of nuclear research are influenced immensely by ideas
of many-body quantum chaos and complexity. From nuclear physics these ap-
proaches proliferate to atomic, molecular and condensed matter physics becom-
ing essential for the functioning of solid state microdevices and future quantum
computers. A very important area left aside in this review is that of reactions and
continuum effects. The most fundamental problems, such as decoherence and
interrelation between the classical approximation and the quantum world, can-
not be solved without accounting for chaos and complexity. Even for quantum
chromodynamics, quantum chaos is an indispensable tool of research and under-
standing [52].
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