
Nuclear Theory’22
ed. V. Nikolaev, Heron Press, Sofia, 2003

Rearrangement of the Experimental Data of
Low Lying Collective Excited States

Vladimir P. Garistov

Institute of Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

Abstract.

The classification of low-lying excited states in even even deformed nuclei
has been done. The available experimental data are represented as the en-
ergies parabolic distributed by number of collective excitations. With other
words each excited state now is determined as the collective state with the
corresponding number of bosons. In this paper we use the Interacting Vec-
tor Bosons Model to vindicate that the experimental data for low-lying ex-
cited states possessing not equal to zero spins can also be described with
parabolic distribution function depending on the number of collective exci-
tations building the corresponding state.

We represent the available experimental data in the form of the energies of
the 0+ excited states as distributed by positive integer parameter and determine
this classification parameter in the way giving us information about collective
structure peculiarities of these states.

In recent new representation of the experimental data of the low lying excited
0+–states. has been applied using the distribution function.

En = An−Bn2 + C (1)

This form of the distribution function appears as the energy spectrum pro-
duced by model monopole Hamiltonian [1]

H = αRj
+R

j
− + βRj

0R
j
0 +

βΩj

2
Rj
0 , (2)

which, written in terms of pure bosons b, b† with
[
b, b†

]
= 1, [b, b] =

[
b†, b†

]
=0

has the form:
H = Ab†b−Bb†bb†b . (3)
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Figure 1. Experimental data for low lying excited 0+ states in 154Gd distributed by
number of monopole bosons.

Some of the distributions of the experimental energies of the excited 0+

states plotted using (1) are shown in Figure 1 for 154Gd and 164Er in Figure 2.
This parabolic distribution (1) reproduces with a great accuracy experimental

values of low lying 0+ excited states energies. Similarly, very nice agreement
was obtained for all available experimental data of low lying 0+ excited states
in a large region of the even-even nuclei.

Of course it is straightforward now to see whether the low lying excited
states having different from zero spin can be also represented in the same form

Figure 2. Experimental data for low lying excited 0+ states in 164Er distributed by num-
ber of monopole bosons.
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of the energies distributed by parabolic type function and can we connect the
new classification parameter with any measure of collectivity.

For this purpose let us shortly remind the Interacting Vector Boson Model
(IVBM) [2], which is based on the introduction of two kinds of vector bosons
(called p and n bosons), that “built up” the collective excitations in the nu-
clear system. The creation operators u+m(α) of these bosons are assumed to
be SO(3)–vectors and they transform according to two independent funda-
mental representations (1, 0) of the group SU(3). The annihilation operators
um(α) = (u+m(α))† transform according to the conjugate representations (0, 1).
These bosons form a “pseudospin” doublet of the group U(2) and differ in their

“pseudospin” projection α = ±1

2
. The introduction of this additional degree

of freedom leads to the extension of the SU(3) symmetry to U(6) so that the

two kind of bosons u+m
(
α = ±1

2

)
transform according to the fundamental rep-

resentation [1]6 of the group U(6). The bilinear products of the creation and
annihilation operators of the two vector bosons generate the noncompact sym-
plectic group Sp(12, R) [2]:

FL
M (α, β) =

∑

k,m

CLM
1k1mu

+
k (α)u

+
m(β) ,

GL
M (α, β) =

∑

k,m

CLM
1k1muk(α)um(β) , (4)

ALM (α, β) =
∑

k,m

CLM
1k1mu

+
k (α)um(β) ,

where CLM
1k1m are the usual Clebsch–Gordon coefficients and L and M define

the transformational properties of (4) under rotations.
We consider Sp(12, R) to be the group of the dynamical symmetry of the

model [2]. Hence the most general one- and two-body Hamiltonian can be
expressed in terms of its generators. Using commutation relations between
FL
M (α, β) and GL

M (α, β), the number of bosons preserving Hamiltonian can
be expressed only in terms of operators AL

M (α, β):

H =
∑

α,β

h0(α, β)A
0(α, β)

+
∑

M,L

∑

αβγδ

(−1)MV L(αβ; γδ)ALM (α, γ)AL−M (β, δ) , (5)

where h0(α, β) and V L(αβ; γδ) are phenomenological constants.
Being a noncompact group, the representations of Sp(12, R) are of infi-

nite dimension, which makes it rather difficult to diagonalize the most general
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Hamiltonian. The operators ALM (α, β) generate the maximal compact subgroup
of Sp(12, R), namely the group U(6):

Sp(12, R) ⊃ U(6)

So the even and odd unitary irreducible representations (UIR) of Sp(12, R)
split into a countless number of symmetric UIR of U(6) of the type
[N, 0, 0, 0, 0, 0]=[N ]6, where N=0,2,4,... for the even one and N=1,3,5,... for
the odd one [2]. Therefore the complete spectrum of the system can be calcu-
lated only trough the diagonalization of the Hamiltonian in the subspaces of all
the UIR of U(6), belonging to a given UIR of Sp(12, R).

Let us consider the rotational limit [2] of the model defined by the chain:

U(6) ⊃ SU(3)× U(2) ⊃ SO(3)× U(1) (6)
[N ] (λ, µ) (N,T ) K L T0 (7)

where the labels below the subgroups are the quantum numbers (7) correspond-
ing to their irreducible representations. Their values are obtained by means of
standard reduction rules and are given in [2]. In this limit the operators of the
physical observables are the angular momentum operator

LM = −
√
2
∑

M,α

A1
M (α, α)

and the truncated (“Elliott”) quadrupole operator

QM =
√
6
∑

M,α

A2
M (α, α) ,

which define the algebra of SU(3).
The “pseudospin” and number of bosons operators:

T+1 =

√
3

2
A0(p, n); T−1 = −

√
3

2
A0(n, p);

T0 = −
√

3

2
[A0(p, p)−A0(n, n)]; N = −

√
3[A0(p, p) +A0(n, n)] ,

define the algebra of U(2).
Since the reduction from U(6) to SO(3) is carried out by the mutually com-

plementary groups SU(3) and U(2), their quantum numbers are related in the
following way:

T =
λ

2
, N = 2µ+ λ (8)

Making use of the latter we can write the basis as

|[N ]6;
(
λ, µ =

N

2

)
;K,L,M ;T0〉 = |(N,T );K,L,M ;T0〉 (9)
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The ground state of the system is:

|0〉 = |(0, 0); 0, 0, 0; 0〉 =
= |(N = 0, T = 0);K = 0, L = 0,M = 0;T0 = 0〉 (10)

which is the vacuum state for the Sp(12, R) group.
Then the basis states [2] associated with the even irreducible representation

of the Sp(12, R) can be constructed by the application of powers of raising
generators FL

M (α, β) of the same group. The SU(3) representations (λ, µ) are
symmetric in respect to the sign of T0.

Hence, in the framework of the discussed boson representation of the
Sp(12, R) algebra all possible irreducible representations of the group SU(3)
are determined uniquely through all possible sets of the eigenvalues of the Her-
mitian operatorsN ,T 2, and T0. The equivalent use of the (λ, µ) labels facilitates
the final reduction to the SO(3) representations, which define the angular mo-
mentum L and its projection M . The multiplicity index K appearing in this
reduction is related to the projection of L in the body fixed frame and is used
with the parity to label the different bands in the energy spectra of the nuclei.
The parity of the states is defined as π=(−1)T . This allows us to describe both
positive and negative bands.

The Hamiltonian, corresponding to this limit of IVBM is expressed in terms
of the first and second order invariant operators of the different subgroups in the
chain (6):

H = aN + α6K6 + α3K3 + α1K1 + β3π3 , (11)

where Kn are the quadratic invariant operators of the U(n) – groups in (6), π3
is the SO(3) Casimir operator. As a result of the connections (8) the Casimir
operators K3 with eigenvalue (λ2 + µ2 + λµ+3λ+3µ), is express in terms of
the operators N and T :

K3 = 2Q2 +
3

4
L2 =

1

2
N2 +N + T 2

After some transformations the Hamiltonian (11) takes the following form

H = aN + bN2 + α3T
2 + β3π3 + α1T

2
0 , (12)

and is obviously diagonal in the basis (9) labeled by the quantum numbers of
the subgroups of chosen chain (6). Its eigenvalues are the energies of the basis
states of the boson representations of Sp(12, R):

E((N,T );KLM ;T0) = aN+bN2+α3T (T+1)+β3L(L+1)+α1T
2
0 . (13)

Using the (λ, µ) labels facilitates and choosing for instance (λ, 0) multiplet
together with the reducing rules (8) after simple regrouping of the terms in (13)
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Figure 3. Experimental data for low lying excited states in 168Er distributed by collective
classification parameter n = λ/4.

we can write the energy spectrum corresponding to this (λ, 0) multiplet as:

E(λ) = Aλ−Bλ2 + C (14)

here A, B and C are the combinations of free model parameters of (13) a, b, α3,
β3 and α1.

Hence choosing any permitted by (8) (λ, µ) multiplet we again may classify
the low lying excited states energies in even even nuclei applying the parabolic
type distribution function and considering label λ as a measure of collectivity of
the corresponding excited states possessing different from 0 spins. In Figure 3
are shown some examples for the classification (consider also n = λ/4) of the
energies of 2+, 4+, and 6+ excited states in 168Er isotopes.

The experimental energies with great accuracy follow the parabolic distribu-
tion function (14) and similar agreement can be obtained for all spectra in even
even nuclei. All experimental data are taken from [3]. This work was partially
supported by Bulgarian Science Committee under contract number Φ – 905.
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