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Abstract. Superscaling analyses of inclusive electron scattering from nuclei are extended
from the quasielastic processes to the delta-excitation region. The calculations of both
quasielastic and delta longitudinal and transverse response functions as well as of (e, e′)
cross sections for 12C at various incident electron energies are performed in approaches go-
ing beyond the mean-field approximation, such as the coherent density fluctuation model and
that one based on the light-front dynamics method. The obtained scaling functions are used
to predict charge-changing neutrino-nucleus cross sections. The analysis makes it possible to
gain information about the nucleon correlation effects on both basic quantities of the nuclear
ground state, the local density and the nucleon momentum distributions.

1 Introduction

The phenomenon of the scaling is observed in processes where weakly interacting
probe scatters from constituents bound in a composite system and a constituent is
ejected from the system in a quasifree way. A properly defined (scaling) function of
a properly defined (scaling) variable turns out to depend on the nucleon momentum
distribution (NMD) which is one of the basic characteristics of the nuclear ground
state. The NMD is an important quantity because it is very sensitive to the nucleon-
nucleon (NN) correlations in nuclei. In other words, it strongly depends on those
components of the total wave function which are not accounted for in the mean-field
approximation (MFA). It is known that in the MFA it is impossible to describe si-
multaneously the two basic nuclear characteristics, the NMD and the density distri-
bution. Thus it is important to develop theoretical correlation methods to study these
quantities beyond the MFA and to look for relevant experiments which can give in-
formation about the two quantities. We should mention that the nuclear y-scaling

59



60 A.N. Antonov et al.

analysis of inclusive electron scattering from a large variety of nuclei (e.g. [1–9])
showed the existence of high-momentum components in the nucleon momentum
distributions n(k) at momenta k > 2 fm−1 due to the presence of nucleon corre-
lations. It was shown (see, e.g. [10–15]) that this specific feature of n(k), which is
similar for all nuclei, is a physical reason for the scaling and superscaling phenom-
ena in nuclei. The concepts of scaling [1–9] and superscaling [10–16] have been
explored in [12, 17] for extensive analyses of the (e, e′) world data (see also [18]).
Scaling of the first kind (no dependence on the momentum transfer) is reasonably
good as expected, at excitation energies below the quasielastic (QE) peak, whereas
scaling of second kind (no dependence on the mass number) is excellent in the same
region. When both types of scaling behavior occur one says that the superscaling
takes place. At energies above the QE peak both scaling of the first and, to a lesser
extent, of the second kind are shown to be violated because of important contri-
butions introduced by effects beyond the impulse approximation, namely, inelas-
tic scattering [19, 20] together with correlation contributions and meson exchange
currents (MEC) [21, 22]. The superscaling analyses of inclusive electron scattering
from nuclei for relatively high energies (several hundred MeV to a few GeV) have
recently been extended to include not only quasielastic processes, but also the region
where Δ-excitation dominates [23].

It has been shown in [23] that, in contrast to the relativistic Fermi gas (RFG)
model scaling function, which is symmetric, limited strictly to the region −1 ≤
ψ′ ≤ +1, and with a maximum value 3/4, the empirically determined fQE(ψ′) has
a somewhat asymmetric shape with a tail that extends towards positive values of
ψ′ and its maximum is only about 0.6. The function fQE calculated within the rel-
ativistic mean field [24, 25] shows a good agreement with the experimental scaling
function.

The superscaling analyses and the present knowledge of inclusive electron scat-
tering allowed one to start studies of neutrino scattering off nuclei on the same
basis ( [23–34]). Using the superscaling analysis of few-GeV inclusive electron-
scattering data, a method was proposed in [23] to predict the inclusive νA and νA
cross sections for the case of 12C in the nuclear resonance region, thereby effectively
including delta isobar degrees of freedom.

In this article we follow our method presented in [13–15] to calculate the scal-
ing function in finite nuclei firstly within the coherent density fluctuation model
(CDFM) (e.g., [35]) – Section 2. As pointed out in [14], the nucleon momentum dis-
tributions n(k) for various nuclei obtained in [36] within a parameter-free theoreti-
cal approach based on the light-front dynamics (LFD) method (e.g., [37] and refer-
ences therein) are also able to describe with a good accuracy both y- and ψ′-scaling
data. So, in our present work (see also [38]) we explore both methods, CDFM and
LFD, to investigate further the scaling functions (also in the Δ-region, Section 3)
and their applications to analyses of electron and neutrino scattering off nuclei (Sec-
tion 4).
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2 Scaling Function in the Quasielastic Region

The superscaling behavior of the scaling function was firstly considered within the
framework of the RFG model [10–12, 16, 17, 19] where a properly defined func-
tion of the ψ′-variable was introduced. As pointed out in [12], however, the actual
nuclear dynamical content of the superscaling is more complex than that provided
by the RFG model. It was observed that the experimental data have a superscaling
behavior in the low-ω side (ω being the transfer energy) of the quasielastic peak for
large negative values of ψ′ (up to ψ′ ≈ −2), while the predictions of the RFG model
are f(ψ′) = 0 for ψ′ ≤ −1. This imposes the consideration of the superscaling in
realistic finite systems. One of the approaches to do this was developed [13, 14] in
the CDFM [35] which is related to the δ-function limit of the generator coordinate
method [13, 39]. It was shown in [13–15] that the superscaling in nuclei can be ex-
plained quantitatively on the basis of the similar behavior of the high-momentum
components of the nucleon momentum distribution in light, medium and heavy nu-
clei. As already mentioned, the latter is related to the effects of the NN correlations
in nuclei (see, e.g. [35]).

In the CDFM, the total scaling function is expressed by the sum of the pro-
ton fQEp (ψ′) and neutron fQEn (ψ′) scaling functions which are determined by the
proton and neutron densities ρp(r) and ρn(r), respectively [15]:

fQEp(n)(ψ
′) =

αp(n)/(k
p(n)
F |ψ′|)∫

0

dR|Fp(n)(R)|2fp(n)
RFG(ψ′(R)). (1)

In Eq. (1) the proton and neutron weight functions are obtained from the corre-
sponding proton and neutron densities (normalized to Z (or N ))

∣∣Fp(n)(R)
∣∣2 = − 4πR3

3Z(N)
dρp(n)(r)

dr

∣∣∣∣
r=R

, (2)

αp(n) =
(

9πZ(N)
4

)1/3

, (3)

the Fermi momentum for the protons and neutrons is calculated using the expression

k
p(n)
F = αp(n)

∞∫
0

dR
1
R
|Fp(n)(R)|2 (4)

and

ψ′(R) = k
p(n)
F

Rψ′

αp(n)
.

The RFG proton and neutron scaling functions fp(n)
RFG(ψ′(R)) have the form:
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f
p(n)
RFG(ψ′(R)) =

3
4

[
1−

(
kFR|ψ′|

α

)2
]{

1 +
(
RmN

α

)2 (
kFR|ψ′|

α

)2

×

×

⎡⎣2 +
(

α

RmN

)2

− 2

√
1 +

(
α

RmN

)2
⎤⎦⎫⎬⎭ , (5)

where α and kF are changed into αp(n) from Eq. (3) and kp(n)
F from Eq. (4), respec-

tively. The functions are normalized as follows:

∞∫
0

|Fp(n)(R)|2dR = 1,

∞∫
−∞

fQEp(n)(ψ
′)dψ′ = 1. (6)

Then the total scaling function can be expressed by means of both proton and neu-
tron scaling functions:

fQE(ψ′) =
1
A

[ZfQEp (ψ′) +NfQEn (ψ′)] (7)

and is normalized to unity. The same consideration can be performed equivalently
on the basis of the nucleon momentum distributions for protons np(k) and neutrons
nn(k) [15].

In Figure 1 we give

Figure 1. The quasielastic scaling function fQE(ψ′) at q =
1000 MeV/c for 4He, 12C, 27Al, 82Kr and 197Au calculated
in CDFM. Dotted line: RFG model result. Grey area: experi-
mental data [11, 12].

the QE CDFM scaling
function for 4He, 12C,
27Al, 82Kr and 197Au
compared with experi-
mental data and RFG re-
sults [11, 12]. As can be
seen our calculations ex-
plain very well the data
for ψ′ < 0 including
ψ′ < −1 whereas in the
RFG model f(ψ′) = 0
for ψ′ ≤ −1.

In the present work
we limit our approach
to phenomenology when
considering the asym-

metric shape and the maximum value of the quasielastic scaling function. In order to
simulate the role of all the effects which lead to asymmetry, we impose the latter on
the RFG scaling function (and, correspondingly, on the CDFM one) by introducing
a parameter which gives the correct maximum value of the scaling function (c1 in
our expressions given below) and also an asymmetry in fQE(ψ′) for ψ′ ≥ 0. We
consider the main parts of the RFG scaling function for ψ′ ≤ 0 and ψ′ ≥ 0 in the
following forms, keeping the parabolic dependence on ψ′ as required in [10]:
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fQE(ψ′) = fQE1 (ψ′) + fQE2 (ψ′), (8)

where

fQE1 (ψ′) ∼=
α/kF |ψ′|∫

0

dR|F (R)|2c1

[
1−

(
kFR|ψ′|

α

)2
]
, ψ′ ≤ 0, (9)

fQE2 (ψ′) ∼=
c2α/kF |ψ′|∫

0

dR|F (R)|2c1

[
1−

(
kFR|ψ′|
c2α

)2
]
, ψ′ ≥ 0. (10)

From the normalization of fQE(ψ′) to unity c2 = 3/(2c1)− 1.
As an example, we

Figure 2. The quasielastic scaling function fQE(ψ′) for 12C
calculated in CDFM in comparison with the phenomenologi-
cal curve which fits the data (dash-two dots), with curve fitting
the result for (e, e′) from [24, 25] (dash-dot line) and the ex-
perimental data (black squares) [23]. The CDFM results for
different values of c1 are also presented by solid lines.

give in Figure 2 the
CDFM QE scaling func-
tion for different values
of c1 (0.75, 0.72, 0.60
and 0.50) in comparison
with the empirical data
and the phenomenologi-
cal fit. We also include
for reference the scaling
function obtained from
calculations for (e, e′)
reaction based on the rel-
ativistic impulse approx-
imation with FSI de-
scribed using the RMF
potential (see [24, 25]
for details). In this way
we simulate in a phe-
nomenological way the
role of the effects which
violate the symmetry (and the superscaling) for positive values of ψ′ of the QE
scaling function including the role of the FSI.

The QE scaling function can be obtained also on the basis of the nucleon mo-
mentum distribution n(k). In this work we use the modified in comparison with that
from [14, 36] light-front dynamics approach presenting n(k) in the form:

nLFD(k) = NA
[
nh(k) + β

(
n2(k) + n5(k)

)]
, (11)

where nh(k) is the hole-state (shell-model) contribution, while n2(k) and n5(k) are
related to the averaged two scalar functions f2 and f5 [36, 37] which are part of
the six components of the total deuteron function in the LFD method. The mo-
mentum distribution (11) has high-momentum components which are similar to
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Figure 3. The quasielastic scal-
ing function fQE(ψ′) calcu-
lated at q = 1000 MeV/c using
nCW (k) from the yCW -scaling
analysis [7, 8] for 56Fe (solid
line) and nLF D(k) from modi-
fied in this work LFD approach
[Eq. (11)] for 12C (dashed line),
with β = 0.80.

those from the y-scaling analysis [7, 8]. The calculated scaling function for 56Fe
at q = 1000 MeV/c is in agreement (see Figure 3) with the result obtained by using
nCW(k) from the yCW-scaling analysis [7, 8].

3 Scaling Function in the Quasielastic Delta Region

In this Section we extend our analysis within both CDFM and LFD to the Δ-peak
region, which is not too far above the QE peak region and is the main contribu-
tion to the inelastic scattering. Following the CDFM application to the scaling phe-
nomenon, the Δ-scaling function in the model is:

fΔ(ψ′
Δ) =

∫ ∞

0

dR|FΔ(R)|2fΔRFG(ψ′
Δ(R)). (12)

In Eq. (12):

ψ′
Δ

2(R) =
1[√

1 +
k2
F (R)
m2
N

− 1

] [
κ

√
ρ′Δ

2 +
1
τ ′
− λ′ρ′Δ − 1

]
≡ t(R).ψ′

Δ
2
,

(13)
where

t(R) ≡

[√
1 +

k2
F

m2
N

− 1

]
[√

1 +
k2
F (R)
m2
N

− 1

] , kF (R) =
α

R
, (14)

and fΔRFG(ψ′
Δ(R)), ψ′

Δ, κ, τ ′, ρ′Δ, λ′ are defined in [23].
The results of our work are presented in Figure 4. As known, the empirical data

require to use a value of the coefficient in the RFG scaling functions fΔRFG(ψ′
Δ)
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Figure 4. The fΔ(ψ′
Δ) scaling

function for 12C in the Δ-
region. Dashed line: CDFM re-
sult (with RΔ = 1.565 fm,
bΔ = 0.420 fm, kF = 1.20
fm−1); solid line: result of mod-
ified LFD approach (β = 0.80,
kF = 1.20 fm−1). The coeffi-
cient c1 = 0.54 in both CDFM
and LFD cases. Averaged exper-
imental values of fΔ(ψ′

Δ) are
taken from [23].

different from 3/4. In our calculations in the Δ-region we use the value 0.54. We
found that reasonable agreement with the data can be achieved using the parameter
values given in the figure caption.

4 Scaling Functions and Inclusive Lepton Scattering

4.1 Scaling Functions and (e, e′) Reaction Cross Sections

In the one-photon-exchange approximation, the double-differential cross section in
the laboratory system can be written in the form (e.g. [10]):

d2σ

dΩk′dε′
= σM

[(
Q2

q2

)2

RL(q, ω) +
(

1
2

∣∣∣∣Q2

q2

∣∣∣∣ + tan2 θ

2

)
RT (q, ω)

]
, (15)

where σM is the Mott cross section, Qμ = (k − k′)μ = (ω,q), ω = ε − ε′,
q = |q| = |k − k′|, Q2 = ω2 − q2 ≤ 0, kμ and k′μ being four-momenta of the
initial and final electron. In Eq. (15) RL and RT are the longitudinal and trans-
verse response functions which contain all the information on the distribution of the
nuclear electromagnetic charge and current densities. These functions can be eval-
uated as components of the nuclear tensor Wμν . In [10] this tensor is computed in
the framework of the RFG model. In the latter the nuclear response functions in
both quasielastic (X = QE) and Δ-resonance (X = Δ) regions have the general
structure

RX =
NmN

qkF

[
RX

]s.n.
fXRFG(ψX), (16)

where N = Z or N , [RX
]s.n.

is the single-proton (or neutron) response function
and fXRFG(ψX) is the QE- or Δ- scaling function.

In the CDFM the longitudinal and transverse response functions can be obtained
by averaging the RFG response functions in the QE- and Δ-region by means of the
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Figure 5. Inclusive electron scattering
on 12C at ε = 1108 MeV and θ =
37.5◦ (qQE

exp � 675 MeV/c > 2kF ).
The results obtained using cQE

1 =
0.73 in the CDFM scaling function
for the QE cross section and the to-
tal result are given by dashed and
thick solid line, respectively. Dotted
line: using CDFMΔ-scaling function;
thin solid line: total CDFM result with
cQE
1 = 0.63. Dot-dashed line: using

QE- and Δ-scaling functions obtained
in the LFD approach. The experimen-
tal data are taken from [40].

Figure 6. Inclusive electron scattering
on 12C at ε = 500 MeV and θ =
60◦ (qQE

exp � 450 MeV/c � 2kF ).
The results obtained using cQE

1 =
0.72 in the CDFM scaling function
for the QE cross section and the to-
tal result are given by dashed and
thick solid line, respectively. Dotted
line: using CDFMΔ-scaling function;
thin solid line: total CDFM result with
cQE
1 = 0.63. Here the dot-dashed line

shows the result using QE- and Δ-
scaling functions obtained in the LFD
approach. The experimental data are
taken from [41].

weight functions in r-space and k-space, similarly as in the case of the QE- and
Δ-scaling functions. As a result, the CDFM response functions RL(T ) in QE- and
Δ-regions have approximately the same forms as in Sections 2 and 3, in which,
however, the RFG scaling functions are changed by the CDFM QE- and Δ- scaling
functions.

In Figures 5–7 we give examples of some results of calculations within the
CDFM of inclusive electron scattering on 12C at different incident energies and
angles. The QE-contribution is calculated using the Fermi-type density distribution
of 12C with the same values of the parameters as in [13, 14]: R = 2.47 fm and
b = 0.42 fm (which lead to a charge rms radius equal to the experimental one)
and Fermi momentum kF = 1.156 fm−1. The delta-contribution is calculated us-
ing the necessary changes of the parameter values of the Fermi-type density (used
in Figure 4): RΔ = 1.565 fm, bΔ = 0.42 fm and kF = 1.20 fm−1. The coeffi-
cient c1 used in the Δ-region scaling function is fixed to be equal to 0.54 so that



Superscaling Analyses of Inclusive Electron Scattering 67

Figure 7. Inclusive electron scattering
on 12C at ε = 1500 MeV and θ =
13.5◦ (qQE

exp � 352 MeV/c < 2kF ).
The results obtained using cQE

1 =
0.72 in the CDFM scaling function
for the QE cross section and the to-
tal result are given by dashed and
thick solid line, respectively. Dotted
line: using CDFMΔ-scaling function;
thin solid line: total CDFM result with
cQE
1 = 0.63. The dot-dashed line is

the result of the ERFG approach [19,
23]. The experimental data are taken
from [42].

the maximum of the scaling function to be in agreement with the data. The scaling
function fΔ(ψ′

Δ) is symmetric, its maximum is chosen to be 0.54 (but not 0.75)
and it is normalized to unity by means of the fixed value of kF = 1.20 fm−1. The
inclusive electron-12C scattering cross sections shown in Figures 5–7 are the sum
of the QE and Δ-contribution. The results of the CDFM calculations are presented
for two values of the coefficient c1 in the QE case (noted further by cQE1 ), namely
for cQE1 = 0.72 (or 0.73 in some cases) and cQE1 = 0.63. This is related to two
types of experimental data. In the first one the transferred momentum in the posi-
tion of the QE peak (ωmax) is qQEmax ≥ 500 MeV/c, roughly corresponding to the
domain where scaling is fulfilled. Such cases are presented in Figures 5 and 6. In
these cases we found by fitting to the maximum of the QE peak the value of cQE1

to be 0.72–0.73, i.e. it is not the same as in the RFG model case (case of symmetry
of the RFG and of the CDFM scaling functions with cQE1 = 0.75), but is slightly
lower. This leads to a weak asymmetry of the CDFM scaling function for cases in
which qQEmax ≥ 500 MeV/c. In the second type of experimental data qQEmax is not
in the region where condition for scaling is fulfilled (qQEmax < 500 MeV/c). Such
a case is given in Figure 7. For them we found by fitting to the maximum of the
QE peak the value of cQE1 to be 0.63. For these cases the CDFM scaling function
is definitely asymmetric. So, the results in Figures 5–7 are presented for both (al-
most) symmetric (cQE1 = 0.72− 0.73) and asymmetric cQE1 = 0.63 CDFM scaling
functions. One can see that the results for the (almost) symmetric CDFM scaling
function agree with the electron data in the region close to the QE peak in cases
where qQEmax ≥ 500 MeV/c and overestimate the data for cases where approximately
qQEmax < 500 MeV/c. The results with asymmetric CDFM scaling function agree
with the data in cases where qQEmax < 500 MeV/c and underestimate the data in cases
where qQEmax ≥ 500 MeV/c. Here we would like to emphasize that, in our opinion,
the usage of asymmetric CDFM scaling function is preferable, though the results in
some cases can underestimate the empirical data, because other additional effects,
apart from QE and Δ-resonance (e.g. meson exchange currents effects) could give
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important contributions to the cross section for some specific kinematics and minor
for others.

In Table 1 the energies, angles, the value of cQE1 obtained by fitting the magni-
tude of the QE peak, the energy shifts in the QE and Δ-case, as well as the approxi-
mate values of the transfer momentum qQEmax in the position of the QE peak (ωmax)
for different cases calculated in our work are listed. The values of the energy shifts
ε
QE(Δ)
shift for the QE- andΔ-regions are generally between 20 and 30 MeV. In the Fig-

ures we also present the QE-contribution (as well as Δ-contribution) for the value
of cQE1 which fits approximately the magnitude of the QE peak.

In Figures 5 and 6 we present also the calculations of the electron cross sec-
tions using QE- and Δ- scaling functions obtained by using the nucleon momen-
tum distributions obtained in the LFD approach which give a reasonable agreement
with the empirical electron scattering data. In Figure 7 we also give for a com-
parison the result of the cross sections obtained within the extended RFG (ERFG)
approach [19, 23].

4.2 Scaling Functions and Charge-Changing Neutrino-Nuclei Reaction Cross
Sections

In this Subsection we present applications of the CDFM and LFD scaling functions
to calculations of charge-changing neutrino-nucleus reaction cross sections. We fol-
low the description of the formalism given in [23]. The charge-changing neutrino
cross section in the target laboratory frame is given in the form[

d2σ

dΩdk′

]
χ

≡ σ0F2
χ, (17)

where χ = + for neutrino-induced reaction (e.g., ν� + n → �− + p, where � =
e, μ, τ ) and χ = − for antineutrino-induced reactions (e.g., ν� + p→ �+ + n).

Table 1. Values of energies ε, angles θ, the coefficient cQE
1 obtained by fitting the magnitude

of the QE peak, energy shifts εQE
shift and εΔshift, and transferred momenta qQE

exp for the cases
of inclusive electron scattering cross sections considered. Energies are in MeV, angles are in
degrees and momenta are in MeV/c.

ε θ cQE
1 εQE

shift εΔshift ≈ qQE
exp

1299 37.5 0.72 30 30 792
2020 20.02 0.73 25 20 703
1108 37.5 0.73 30 30 675
620 60 0.73 20 0 552
2020 15.02 0.72 20 30 530
500 60 0.72 30 0 450
730 37.1 0.72 20 20 442 � 2kF

1650 13.5 0.63 20 30 390
1500 13.5 0.63 20 20 352
537 37.1 0.63 20 20 326
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Figure 8. The cross section of quasielastic charge-changing (νμ, μ
−) reaction (a) and of

(νμ, μ
+) reaction (b) on 12C for ε = 1 GeV using QE-scaling functions in CDFM (thin

solid line: with c1 = 0.63; thin dashed line: with c1 = 0.72). The results using QE-scaling
functions in LFD (thick solid line: with c1 = 0.63; thick dashed line: with c1 = 0.72) are
presented in (b). The RFG model result and ERFG result [19, 23] are shown by dotted and
dash-dotted lines, respectively.

The quantity F2
χ which depends on the nuclear structure is written in [23] as a

generalized Rosenbluth decomposition having charge-charge, charge-longitudinal,
longitudinal-longitudinal and two types of transverse responses. They are expanded
into their vector and axial-vector contributions. The nuclear response functions are
expressed in terms of the nuclear tensor Wμν in both QE and Δ-regions using
its relationships with the RFG model scaling functions. In the calculations of the
neutrino-nuclei cross sections, following [23], the Höhler parametrization 8.2 [43]
of the form factors in the vector sector was used, while in the axial-vector sector the
form factors given in [23] were used.

In our work, instead of the RFG scaling functions in QE- and Δ-regions, we use
those obtained in the CDFM and LFD approach (Sections 2 and 3). In Figure 8 we
present some of the results of calculations for cross sections of QE neutrino (νμ, μ−)
scattering on 12C and also antineutrino (νμ, μ+) scattering for energy of neutrino
εν = 1 GeV and of antineutrino εν = 1 GeV. The presented cross sections are
functions of muon kinetic energy. The energy shift is equal to 20 MeV. We give the
results of our calculations using the CDFM scaling function which is almost sym-
metric (with c1 = 0.72), as well as the asymmetric CDFM scaling function (with
c1 = 0.63). These values of c1 correspond to the cases of inclusive electron scatter-
ing considered. As can be seen the results obtained by using the almost symmetric
CDFM scaling function are close to the RFG model results. On the other hand, the
results obtained with the use of asymmetric CDFM and LFD scaling functions are
quite different from those in the RFG model, but are close to the predictions of the
ERFG model [19,23]. The basic difference from the ERFG model result is observed
in the tail extended to small muon energy values, where the ERFG model gives more
strength.
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5 Conclusions

The results of the present work can be summarized as follows:

1. The quasielastic scaling function f(ψ′) is calculated in the CDFM equiva-
lently by means of both density and nucleon momentum distributions for light,
medium and heavy nuclei (including those with Z �= N for which proton and
neutron densities are not similar): 4He, 12C, 27Al, 56Fe, 82Kr, 118Sn, 197Au.
The results explain the superscaling for ψ′ ≤ 0 including ψ′ < −1, whereas in
the RFG model f(ψ′) = 0 for ψ′ ≤ −1.

2. Asymmetry in CDFM QE f(ψ′) is introduced phenomenologically, thus simu-
lating the role of all the effects which violate the symmetry for ψ′ ≥ 0 including
the role of FSI.

3. QE f(ψ′) is obtained also on the basis of nucleon momentum distributions n(k)
calculated within the modified light-front dynamics method. An agreement of
nLFD with the y- and yCW-scaling data is achieved, as well as a good description
of the empirical QE scaling function is obtained.

4. The CDFM and LFD approaches are extended to the Δ-peak region which is
the main contribution to the inelastic scattering. An agreement with the experi-
mental data is obtained.

5. The QE- and Δ-scaling functions in CDFM and LFD are applied to description
of data on inclusive electron scattering by 12C at large energies and transferred
momenta. The question of (almost) symmetric or asymmetric f(ψ′) is consid-
ered in relation to the value of qQE

max in the region close to the QE peak (ωmax)
(≥ 500 MeV/c or < 500 MeV/c) and to the possibility additional effects (e.g.
MEC) to contribute to the inclusive electron scattering cross sections for some
specific kinematics.

6. The CDFM and LFD scaling functions (the same from the (e, e′) analysis) are
applied to calculations of charge-changing neutrino- 12C (νμ, μ−) and (νμ, μ+)
reaction cross sections for energies of the incident particles from 1 to 2 GeV.
The results are compared with those of RFG and ERFG methods.
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