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Abstract. A γ-rigid version (with γ = 0) of the X(5) critical point symmetry is constructed.
The model, to be called X(3) since it is proved to contain three degrees of freedom, utilizes an
infinite well potential, is based on exact separation of variables, and leads to parameter free
(up to overall scale factors) predictions for spectra and B(E2) transition rates, which are in
good agreement with existing experimental data for 172Os and 186Pt. The predictions of X(3)
are furthermore compared to two-parameter calculations in the framework of the Interacting
Boson Approximation (IBA) model. The results show that X(3) coincides with IBA parame-
ters consistent with the phase/shape transition region of the IBA. The same turns out to hold
also for the parameter independent (up to overall scale factors) predictions of the X(5)-β2

and X(5)-β4 models, which are variants of the X(5) critical point symmetry developed within
the framework of the geometric collective model, manifested experimentally in 146Ce, 174Os,
and 158Er, 176Os respectively.

1 Introduction

Critical point symmetries [1, 2], describing nuclei at points of shape/phase transi-
tions between different limiting symmetries, have recently attracted considerable
attention, since they lead to parameter independent (up to overall scale factors) pre-
dictions which are found to be in good agreement with experiment [3–6]. The X(5)
critical point symmetry [2], in particular, is supposed to correspond to the transition
from vibrational [U(5)] to prolate axially symmetric [SU(3)] nuclei, materialized in
the N = 90 isotones 150Nd, 152Sm, 154Gd, and 156Dy.

On the other hand, it is known that in the framework of the nuclear collective
model [7], which involves the collective variables β and γ, interesting special cases
occur by “freezing” the γ variable [8] to a constant value.
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In the present work we construct a version of the X(5) model in which the γ vari-
able is “frozen” to γ = 0, instead of varying around the γ = 0 value within a har-
monic oscillator potential, as in the X(5) case. It turns out that only three variables
are involved in the present model, which is therefore called X(3). Exact separation
of the β variable from the angles is possible. Experimental realizations of X(3) ap-
pear to occur in 172Os and 186Pt. The results are also compared to Interacting Boson
Model (IBM) [11] two-parameter calculations, showing that they are consistent with
IBM parameters close to the phase/shape transition region of the IBM.

2 The X(3) Model

In the collective model of Bohr [7] the classical expression of the kinetic energy cor-
responding to β and γ vibrations of the nuclear surface plus rotation of the nucleus
has the form [7, 9]

T =
1
2

3∑
k=1

Jk ω′2
k +

B

2
(β̇2 + β2γ̇2), (1)

where β and γ are the usual collective variables, B is the mass parameter,

Jk = 4Bβ2 sin2
(
γ − 2

3πk
)

(2)

are the three principal irrotational moments of inertia, and ω′
k (k = 1, 2, 3) are

the components of the angular velocity on the body-fixed k-axes, which can be
expressed in terms of the time derivatives of the Euler angles φ̇, θ̇, ψ̇ [9]

ω′
1 = − sin θ cosψ φ̇+ sinψ θ̇,

ω′
2 = sin θ sinψ φ̇+ cosψ θ̇, (3)

ω′
3 = cos θ φ̇+ ψ̇.

Assuming the nucleus to be γ-rigid (i.e. γ̇ = 0), as in the Davydov and Chaban
approach [8], and considering in particular the axially symmetric prolate case of
γ = 0, we see that the third irrotational moment of inertia J3 vanishes, while the
other two become equal J1 = J2 = 3Bβ2, the kinetic energy of Eq. (1) reaching
the form [9, 10]

T =
1
2
3Bβ2(ω′2

1 + ω′2
2 ) +

B

2
β̇2 =

B

2

[
3β2(sin2 θ φ̇2 + θ̇2) + β̇2

]
. (4)

It is clear that in this case the motion is characterized by three degrees of freedom.
Introducing the generalized coordinates q1 = φ, q2 = θ, and q3 = β, the kinetic
energy becomes a quadratic form of the time derivatives of the generalized coordi-
nates [9, 12]

T =
B

2

3∑
i,j=1

gij q̇iq̇j , (5)
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with the matrix gij having a diagonal form

gij =

⎛⎝3β2 sin2 θ 0 0
0 3β2 0
0 0 1

⎞⎠ . (6)

(In the case of the full Bohr Hamiltonian [7] the square matrix gij is 5-dimensional
and non-diagonal [9,12].) Following the general procedure of quantization in curvi-
linear coordinates one obtains the Hamiltonian operator [9, 12]

H = − �
2

2B
Δ+ U(β) = − �

2

2B

[
1
β2

∂

∂β
β2 ∂

∂β
+

1
3β2

ΔΩ

]
+ U(β), (7)

where ΔΩ is the angular part of the Laplace operator

ΔΩ =
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
. (8)

The Schrödinger equation can be solved by the factorization

Ψ(β, θ, φ) = F (β)YLM (θ, φ), (9)

where YLM (θ, φ) are the spherical harmonics. Then the angular part leads to the
equation

−ΔΩYLM (θ, φ) = L(L+ 1)YLM (θ, φ), (10)

where L is the angular momentum quantum number, while for the radial part F (β)
one obtains[

1
β2

d

dβ
β2 d

dβ
− L(L+ 1)

3β2
+

2B
�2

(
E − U(β)

)]
F (β) = 0. (11)

As in the case of X(5) [2], the potential in β is taken to be an infinite square well

U(β) =
{

0, 0 ≤ β ≤ βW
∞, β > βW

, (12)

where βW is the width of the well. In this case F (β) is a solution of the equation[
d2

dβ2
+

2
β

d

dβ
+

(
k2 − L(L+ 1)

3β2

)]
F (β) = 0 (13)

in the interval 0 ≤ β ≤ βW , where reduced energies ε = k2 = 2BE/�2 [2] have
been introduced, while it vanishes outside. Substituting F (β) = β−1/2f(β) one
obtains the Bessel equation[

d2

dβ2
+

1
β

d

dβ
+

(
k2 − ν2

β2

)]
f(β) = 0, (14)
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Figure 1. Energy levels of the ground state (s = 1), β1 (s = 2), and β2 (s = 3) bands of
X(3), normalized to the energy of the lowest excited state, 2+

1 , together with intrabandB(E2)
transition rates, normalized to the transition between the two lowest states, B(E2; 2+

1 →
0+
1 ).

where

ν =

√
L(L+ 1)

3
+

1
4
, (15)

the boundary condition being f(βW ) = 0. The solution of (13), which is finite at
β = 0, is then

F (β) = FsL(β) =
1√
c
β−1/2Jν(ks,νβ), (16)

with ks,ν = xs,ν/βW and εs,ν = k2
s,ν , where xs,ν is the s-th zero of the

Bessel function of the first kind Jν(ks,νβW ) and the normalization constant c =
β2
W J2

ν+1(xs,ν)/2 is obtained from the condition
∫ βW

0
F 2
sL(β)β2dβ = 1. The cor-

responding spectrum, shown in Figure 1, is then

Es,L =
�

2

2B
k2
s,ν =

�
2

2Bβ2
W

x2
s,ν . (17)

It should be noticed that in the X(5) case [2] the same Eq. (14) occurs, but with

ν =
√

L(L+1)
3 + 9

4 .
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From the symmetry of the wave function of Eq. (9) with respect to the plane
which is orthogonal to the symmetry axis of the nucleus and goes through its center,
follows that the angular momentumL can take only even nonnegative values. There-
fore no γ-bands appear in the model, as expected, since the γ degree of freedom has
been frozen.

In the general case the quadrupole operator is

T (E2)
μ = t β

[
D2 ∗
μ,0(Ω) cos γ +

1√
2
[D2 ∗

μ,2(Ω) +D2 ∗
μ,−2(Ω)] sin γ

]
, (18)

where Ω denotes the Euler angles and t is a scale factor. For γ = 0 the quadrupole
operator becomes

T (E2)
μ = t β

√
4π
5
Y2μ(θ, φ). (19)

B(E2) transition rates

B(E2; sL→ s′L′) =
1

2L+ 1

∣∣∣〈s′L′||T (E2)||sL〉
∣∣∣2 (20)

are calculated using the wave functions of Eq. (9) and the volume element
dτ = β2 sin θ dβdθdφ, the final result being

B(E2; sL→ s′L′) = t2
(
CL

′ 0
L 0, 2 0

)2

I2
sL; s′L′ , (21)

where CL
′ 0

L 0, 2 0 are Clebsch–Gordan coefficients and the integrals over β are

IsL; s′L′ =
∫ βW

0

β FsL(β)Fs′L′(β)β2 dβ. (22)

3 The IBA Hamiltonian and Symmetry Triangle

The study of shape/phase transitions in the IBA is facilitated by writing the IBA
Hamiltonian in the form [13, 14]

H(ζ, χ) = c

[
(1− ζ)n̂d −

ζ

4NB
Q̂χ · Q̂χ

]
, (23)

where n̂d = d† · d̃, Q̂χ = (s†d̃ + d†s) + χ(d†d̃)(2), NB is the number of valence
bosons, and c is a scaling factor. The above Hamiltonian contains two parameters, ζ
and χ, with the parameter ζ ranging from 0 to 1, and the parameter χ ranging from 0
to −

√
7/2 = −1.32. With this parameterization, the entire symmetry triangle of the

IBA, shown in Figure 2, can be described, along with each of the three dynamical
symmetry limits of the IBA. The parameters (ζ, χ) can be plotted in the symmetry
triangle by converting them into polar coordinates [15]
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 X(3)

 X(5)-β2

 X(5)-β4

 X(5)

ζ = 1, χ = 0

ζ = 1, χ = -◊7/2ζ = 0
U(5) SU(3)

O(6)

Figure 2. IBA symmetry triangle illustrating the dynamical symmetry limits and their cor-
responding parameters. The phase transition region of the IBA, bordered by ζ∗ on the left
and by ζ∗∗ on the right, as well as the loci of parameters which reproduce the R4/2 ratios
of X(3) (2.44), X(5)-β2 (2.65) [24], X(5)-β4 (2.77) [24], and X(5) (2.90) [2] are shown for
NB = 10. The line defined by ζcrit is also shown, lying to the right of the left border and
almost coinciding with it.

ρ =
√

3ζ√
3 cos θχ − sin θχ

, θ =
π

3
+ θχ, (24)

where θχ = (2/
√

7)χ(π/3).
Using the coherent state formalism of the IBA [11, 16, 17] one can obtain the

scaled total energy,E(β, γ)/(cNB), in the form [18]

E(β, γ) =
β2

1 + β2

[
(1− ζ)− (χ2 + 1)

ζ

4NB

]
− 5ζ

4NB(1 + β2)

− ζ(NB − 1)
4NB(1 + β2)2

[
4β2 − 4

√
2
7
χβ3 cos 3γ +

2
7
χ2β4

]
, (25)

where β and γ are the two classical coordinates, related [11] to the Bohr geometrical
variables [7].

As a function of ζ, a shape/phase coexistence region [19] begins when a de-
formed minimum, determined from the condition ∂2E

∂β2 |β0 �=0 = 0, appears in addition
to the spherical minimum and ends when only the deformed minimum remains. The
latter is achieved when E(β, γ) becomes flat at β = 0, fulfilling the condition [14]
∂2E
∂β2 |β=0 = 0, which is satisfied for

ζ∗∗ =
4NB

8NB + χ2 − 8
. (26)
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 Figure 3. Comparison of the experimental data (middle) to the X(3) predictions (left) and
IBA calculations (right) for 186Pt (top) and 172Os (bottom). The thicknesses of the arrows in-
dicate the relative (gray arrows) and absolute (white arrows) B(E2) strengths which are also
labelled by their values. The absolute B(E2) strengths are normalized to the experimental
B(E2; 2+

1 → 0+
1 ) value in each nucleus. Experimental data taken from Refs. [21–23].

In between there is a point, ζcrit, where the two minima are equal and the first
derivative of Emin, ∂Emin/∂ζ, is discontinuous, indicating a first-order phase tran-
sition. This point is [20]

ζcrit =
16NB

34NB − 27
. (27)

The range of ζ corresponding to the region of shape/phase coexistence shrinks
with decreasing |χ| and converges to a single point for χ = 0, which is the point of a
second-order phase transition between U(5) and O(6), located on the U(5)–O(6) leg
of the symmetry triangle (which is characterized by χ = 0) at ζ = NB/(2NB − 2),
as seen from Eq. (26). The phase transition region of the IBA is included in Figure 2.
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In Figure 2 it is clear that the line reproducing the R4/2 ratio of the X(3) model
lies within the phase transition region of the IBA, or close to it. Nuclei exhibiting
level schemes similar to X(3), namely 186Pt and 172Os, are shown in Figure 3, to-
gether with relevant IBA fits. In a similar manner one can see that 146Ce and 174Os
provide good examples of the X(5)-β2 model [24], while 158Er and 176Os are good
examples of the X(5)-β4 model [24].
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