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Abstract. A symplectic no-core shell model (Sp-NCSM) is constructed with the goal of
extending the ab-initio NCSM to include strongly deformed higher-oscillator-shell config-
urations and to reach heavier nuclei that cannot be studied currently because the spaces
encountered are too large to handle, even with the best of modern-day computers. This
goal is achieved by integrating two powerful concepts: the ab-initio NCSM with that of the
Sp(3,R) ⊃ SU(3) group-theoretical approach. The NCSM uses modern realistic nuclear
interactions in model spaces that consists of many-body configurations up to a given number
of �Ω excitations together with modern high-performance parallel computing techniques.
The symplectic theory extends this picture by recognizing that when deformed configura-
tions dominate, which they often do, the model space can be better selected so less relevant
low-lying �Ω configurations yield to more relevant high-lying �Ω configurations, ones that
respect a near symplectic symmetry found in the Hamiltonian. Results from an application of
the Sp-NCSM to light nuclei are compared with those for the NCSM and with experiment.

1 Introduction

The concept of an ab initio no-core shell-model (NCSM) [1], which yields a good
description of the low-lying states in few-nucleon systems as well as in more com-
plex nuclei [1,2], has taken center stage in the development of microscopic tools for
studying the structure of atomic nuclei. The architecture for the NCSM capitalizes
on computational efficiencies that can be realized when many-particle Slater deter-
minant basis states are mapped onto an integer bit string representation of that state
on a computer. In addition, in the framework of the NCSM one can employ modern
realistic interactions that reflect on the essence of the strong interaction. Recently
developed realisticNN potentials include J-matrix inverse scattering potentials [3],
high-precision NN potentials derived from meson exchange theory [4] and nuclear
two- and many-body forces based on chiral effective field theory [5].

The symplectic no-core shell-model (Sp-NCSM) [6] amplifies on this concept
by recognizing that deformed configurations often dominate and these, while typi-
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cally described by only few collective Sp(3,R) basis states, correspond to a special
linear combination of a large number of NCSM basis states. Hence, the effective
size of the model space can be significantly reduced and constrained to respect
a near symplectic symmetry, that within a 0�Ω space reduces to SU(3), of the
model Hamiltonian. In this way, the Sp-NCSM will allow one to account for even
higher �Ω configurations required to realize experimentally measured B(E2) values
without an effective charge, and especially highly deformed spatial configurations
required to reproduce α-cluster modes in heavier nuclei.

As a ‘proof-of-principle’ study, results for no-core and symplectic no-core cal-
culations up to 6�Ω are compared for two nuclei, namely, the deformed 12C and
the closed-shell 16O. The analysis of the results shows that the 0+

gs and the lowest
2+ and 4+ states in 12C as well as the 0+

gs in 16O, which are derived in the frame-
work of the NCSM with the JISP16 realistic interaction [3] and are well converged,
reflect the presence of an underlying symplectic sp(3,R) algebraic structure 1. This
is achieved through the projection of realistic NCSM eigenstates onto Sp(3,R)-
symmetric basis states of the symplectic shell model.

The symplectic shell model [7, 8] is a multiple oscillator shell generalization of
Elliott’s SU(3) model and as well, a microscopic realization of the successful Bohr-
Mottelson collective model. Symplectic algebraic approaches have achieved a very
good reproduction of low-lying energies in 12C using phenomenological interac-
tions [9] or truncated symplectic basis with simplistic (semi-) microscopic interac-
tions [10,11]. Here, we establish, for the first time, the dominance of the symplectic
Sp(3,R) symmetry in nuclei as unveiled through ab initio calculations of the NCSM
type with realistic interactions. This in turn opens up a new and exciting possibil-
ity for representing significant high-�Ω collective modes by extending the NCSM
basis space beyond its current limits through Sp(3,R) basis states, which yields a
dramatically smaller basis space to achieve convergence of higher-lying collective
modes. In this regard, it may be interesting to understand the importance of a larger
model space beyond the 6�Ω limit and its role in shaping other low-lying states in
12C and 16O such as the second 0+, which is likely to reflect a cluster-like behavior
(e.g., see [12]). This task, albeit challenging, is feasible for the no-core shell model
with the symplectic Sp(3,R) extension.

2 Symplectic Shell Model

The symplectic shell model is based on the noncompact symplectic sp(3,R) al-
gebra that with its subalgebraic structure unveils the underlying physics of a mi-
croscopic description of collective modes in nuclei [7, 8]. The latter follows from
the fact that the mass quadrupole and monopole moment operators, the many-
particle kinetic energy, the angular and vibrational momenta are all elements of
the sp(3,R) ⊃ su(3) ⊃ so(3) algebraic structure. Hence, collective states of a nu-
cleus with well-developed quadrupole and monopole vibrations as well as collective

1 We use lowercase (capital) letters for algebras (groups).
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rotations are described naturally in terms of irreducible representations (irreps) of
Sp(3,R). Furthermore, the elements of the sp(3,R) algebra are constructed as bi-
linear products in the harmonic oscillator (HO) raising and lowering operators that
in turn are expressed through particle coordinates and linear momenta. This means
the basis states of a Sp(3,R) irrep can be expanded in a HO (m-scheme) basis, the
same basis used in the NCSM, thereby facilitating symmetry identification.

The symplectic basis states are labeled (in standard notation [7,8]) according to
the reduction chain

Sp(3,R) ⊃ U(3) ⊃ SO(3)
Γσ Γnρ Γω κ L

(1)

and are constructed by acting with polynomialsP in the symplectic raising operator,
A(2 0), on a set of basis states of the symplectic bandhead, |Γσ〉, which is a Sp(3,R)
lowest-weight state2,

|ΓσΓnρΓωκ(LS)JMJ〉=
[
PΓn(A(2 0))× |Γσ〉

]ρΓω

κ(LS)JMJ
, (2)

where Γσ ≡ Nσ (λσ μσ) labels Sp(3,R) irreps with (λσ μσ) denoting a SU(3)
lowest-weight state, Γn ≡ n (λn μn), and Γω ≡ Nω (λω μω). The (λn μn) set gives
the overall SU(3) symmetry of n2 coupled raising operators in P , (λω μω) specifies
the SU(3) symmetry of the symplectic state, and Nω = Nσ + n is the total number
of oscillator quanta related to the eigenvalue, Nω�Ω, of a HO Hamiltonian that is
free of spurious modes.

The symplectic raising operator A(2 0)
lm , which is a SU(3) tensor with (λμ) =

(2 0) character, can be expressed as a bilinear product of the HO raising operators,

A
(20)
lm = 1√

2

∑
i

[
b†i × b†i

](20)

lm
− 1√

2A

∑
s,t

[
b†s × b†t

](20)

lm
, (3)

where the sums are over all A particles of the system. The first term in (3) describes
2�Ω one-particle-one-hole (1p-1h) excitations (one particle raised by two shells)
and the second term eliminates the spurious center-of-mass excitations in the con-
struction (2). For the purpose of comparison to NCSM results, the basis states of the
|Γσ〉 bandhead in (2) are constructed in a m-scheme basis,

|Γσκ(L0S0)J0M0〉=[
P(λπ μπ)
Sπ

(a†π)×P
(λν μν)
Sν

(a†ν)
](λσ μσ)

κ(L0S0)J0M0

|0〉 , (4)

where |0〉 is a vacuum state, P(λπ μπ)
Sπ

and P(λν μν)
Sν

denote polynomials of proton
(a†π) and neutron (a†ν) creation operators coupled to good SU(3)×SU(2) symmetry.

2 A Sp(3,R) lowest-weight state, |Γσ〉, is defined as A(0 2)|Γσ〉 = 0, where the symplectic
lowering operator A(0 2) is the adjoint of A(2 0).
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3 Results and Discussions

The lowest-lying states of 12C and 16O were calculated using the NCSM as imple-
mented through the Many Fermion Dynamics (MFD) code [13]. For 12C we used an
effective interaction derived from the realistic JISP16 NN potential [3] for different
�Ω oscillator strengths, while for 16O the bare JISP16 interaction was employed.
We are particularly interested in the J = 0+

gs and the lowest J = 2+(≡ 2+
1 ) and

J=4+(≡4+
1 ) states of the ground-state (gs) rotational band in 12C and the J=0+

gs

state in 16O that appear to be well converged in the Nmax = 6 NCSM basis space.
Here we report on an analysis that is restricted to 0p-0h configurations. It is

important to note that 2�Ω 2p-2h (2 particles raised by one shell each) and higher
rank np-nh excitations and allowed multiples thereof can be included by building
them into an expanded set of lowest-weight Sp(3,R) starting state configurations.
The same “build-up” logic, (2), holds because by construction these additional start-
ing state configurations are also required to be lowest-weight Sp(3,R) states. Note
that if one were to include all possible lowest-weight np-nh starting state config-
urations (n ≤ Nmax), and allowed multiples thereof, one would span the entire
NCSM space. The addition of 2�Ω 2p-2h, 4�Ω 4p-4h, and higher configurations,
which build upon more complex starting states, will be the subject of a follow-on
investigation.

3.1 Ground-State Rotational Band in the 12C Nucleus

For 12C there are 13 unique 0p-0h Sp(3,R) irreps which form the symplectic band-
head basis states, |Γσ〉with Nσ = 24.5. For each 0p-0h Sp(3,R) irrep we generated
basis states according to (2) up to Nmax = 6 (6�Ω model space). The typical di-
mension of a symplectic irrep basis in the Nmax = 6 space is on the order of 102 as
compared to 107 for the full NCSM m-scheme basis space.

As Nmax is increased the dimension of the J = 0, 2, and 4 symplectic space
built on the 0p-0h Sp(3,R) irreps grows very slowly compared to the NCSM space
dimension (Figure 1). This means that a space spanned by a set of symplectic basis
states may be computationally manageable even when high-�Ω configurations are
included.

Analysis of overlaps of the symplectic states with the NCSM eigenstates for the
0+
gs and the lowest 2+ and 4+ states reveals nonnegligible overlaps for only 3 of the

13 0p-0h Sp(3,R) (Nσ = 24.5) irreps, specifically, the leading (most deformed)
representation (λσ μσ) = (0 4) carrying spin S = 0 together with two S = 1
representations with identical labels (1 2) but different bandhead constructions for
protons and neutrons (4), namely, {(λπ μπ)Sπ, (λν μν)Sν} is {(0 2)0, (1 0)1}
and {(1 0)1, (0 2)0}. The dominance of only three irreps additionally reduces the
dimensionality of the symplectic model space (Figure 1, red diamonds).

The overlaps of the most dominant symplectic states with the NCSM eigenstates
for the 0+

gs, 2+
1 and 4+

1 states in the 0, 2, 4 and 6�Ω subspaces are given in Table 1.
The results show that approximately 80% of the NCSM eigenstates fall within a
subspace spanned by the 3 leading 0p-0h Sp(3,R) irreps, with the most deformed
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Table 1. Probability distribution of NCSM eigenstates for 12C across the leading 3 0p-0h
Sp(3,R) irreps, �Ω=15 MeV.

0�Ω 2�Ω 4�Ω 6�Ω Total

J=0

(0 4)S = 0 46.26 12.58 4.76 1.24 64.84

Sp(3,R) (1 2)S = 1 4.80 2.02 0.92 0.38 8.12

(1 2)S = 1 4.72 1.99 0.91 0.37 7.99

Total 55.78 16.59 6.59 1.99 80.95

NCSM 56.18 22.40 12.81 7.00 98.38

J=2

(0 4)S = 0 46.80 12.41 4.55 1.19 64.95

Sp(3,R) (1 2)S = 1 4.84 1.77 0.78 0.30 7.69

(1 2)S = 1 4.69 1.72 0.76 0.30 7.47

Total 56.33 15.90 6.09 1.79 80.11

NCSM 56.63 21.79 12.73 7.28 98.43

J=4

(0 4)S = 0 51.45 12.11 4.18 1.04 68.78

Sp(3,R) (1 2)S = 1 3.04 0.95 0.40 0.15 4.54

(1 2)S = 1 3.01 0.94 0.39 0.15 4.49

Total 57.50 14.00 4.97 1.34 77.81

NCSM 57.64 20.34 12.59 7.66 98.23

irrep, (0 4), carrying about 65% of the 80%. In order to speed up the calculations, we
retained only the largest amplitudes of the NCSM states, those sufficient to account
for at least 98% of the norm which is quoted also in the table.

Figure 1. Dimension of the NCSM (blue squares) and J = 0, 2, and 4 Sp(3,R) (red dia-
monds for the 3 most significant 0p-0h irrep case and green circles for when all 13 0p-0h
irreps are included) model spaces as a function of maximum allowed �Ω excitations, Nmax.
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Figure 2. 12C ground 0+ state probability distribution over 0�Ω (blue, lowest) to
6�Ω (green, highest) subspaces for the 3 0p-0h Sp(3,R) irrep case (left) and NCSM (right)
together with the (0 4) irrep contribution (black diamonds) as a function of the �Ω oscillator
strength in MeV for Nmax = 6.

In addition, the 0+
gs analysis of the S = 0 (S = 1) part of the NCSM wavefunc-

tion reveals that within each �Ω subspace only about 1 − 1.5% of the NCSM 0+
gs

are not accounted for by the S = 0 (S = 1) Sp(3,R) irrep(s) under consideration.
In the Nmax = 6 model space the S = 0 symplectic irrep and the two S = 1 irreps
account for 91% and 80%, respectively, of the correspondingS = 0 and S = 1 parts
of the NCSM realistic eigenstate for the J=0+

gs in 12C. In summary, the S = 0 plus
S = 1 part of the NCSM wavefunction is very well explained by only the three
Sp(3,R) collective configurations.

How the results presented in Table 1 change as a function of the oscillator
strength �Ω is shown in Figure 2 for the case of the 0+

gs state. Clearly, the pro-
jection of the NCSM wavefunctions onto the symplectic space slightly changes as
one varies the oscillator strength �Ω. The 3 Sp(3,R) irreps, (0 4)S = 0 and the two
(1 2)S = 1, remain dominant, only their contributions change. The overall overlaps
increase towards smaller �Ω HO frequencies and, for example, for 0+

gs it is 85% in
the Nmax = 6 and �Ω = 11MeV case. Clearly, the largest contribution comes from
the leading, most deformed, (0 4)S = 0 Sp(3,R) irrep, growing to 91% of the to-
tal Sp(3,R)-symmetric part for �Ω =11 MeV. As expected, Figure 2 also confirms
that with increasing �Ω the higher �Ω excitations contribute less while the lower
0�Ω configurations grow in importance.

In short, the low-lying states in 12C are well described in terms of only three
Sp(3,R) irreps with total dimensionality of 514, which is only 0.001% of the NCSM
space, with a clear dominance of the most deformed (0 4)S = 0 collective config-
uration. It is important to note that our results suggest that overlaps can be further
improved by the inclusion of the most important 2�Ω 2p-2h Sp(3,R) irreps. In this
way it may be possible to achieve overlaps of more then 90% while keeping the size
of the basis space small, possibly much less than 1% of the NCSM result. This is
the subject of ongoing investigations and will be addressed in a subsequent study.
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The 0+
gs, 2+

1 and 4+
1 states, constructed in terms of the three Sp(3,R) irreps

with probability amplitudes defined by the overlaps with the NCSM wavefunc-
tions, were also used to determine B(E2) transition rates. The B(E2 : 2+

1 → 0+
gs)

value, for example, turns out to be ≈110% of the corresponding NCSM number
for the �Ω = 15MeV and Nmax = 4 case. While this ratio decreases slightly for
smaller �Ω oscillator strengths, it is significant that this estimate for the dominant
Sp(3,R) configurations exceeds the corresponding full NCSM results and therefore
lies closer to the experimental B(E2 : 2+

1 → 0+
gs) value.

3.2 Ground State in the 16O Nucleus

The Sp-NCSM is also applied to the ground state of a closed-shell nucleus like
16O. There is only one 0p-0h Sp(3,R) irrep with spin S = 0 and Γσ specified by
Nσ = 34.5 and (λσ μσ) = (0 0). As in the 12C case, for the 0p-0h Sp(3,R) irrep we
generated basis states according to (2) up to Nmax = 6 (6�Ω model space), which
yields a symplectic model space that is only a fraction (≈ 0.1%) of the size of the
NCSM space. Consistent with the outcome for 12C, the projection of the NCSM
eigenstates onto the symplectic basis reveals a large Sp(3,R)-symmetric content in
the ground-state wavefunction (Figure 3). Furthermore, the overall overlap increases
by ≈ 10% when the most significant 2�Ω 2p-2h are included.

While the focus here has been on demonstrating the existence of Sp(3,R) sym-
metry in NCSM results for 12C and 16O, and therefore a possible path forward for
extending the NCSM to a Sp-NCSM scheme, the results can also be interpreted as
a further strong confirmation of Elliott’s SU(3) model since the projection of the
NCSM states onto the 0�Ω space [Figure 2 and Figure 3, blue (right) bars] is a pro-
jection of the NCSM results onto the SU(3) shell model. For 16O the 0�Ω SU(3)
symmetry is ≈ 60% of the NCSM 0+

gs [Figure 3, blue (left) bars]. For 12C the 0�Ω
SU(3) symmetry ranges from just over 40% of the NCSM 0+

gs for �Ω = 11 MeV

Figure 3. 16O ground 0+ state probability distribution over 0�Ω (blue, lowest) to
6�Ω (green, highest) subspaces for the leading 0p-0h (0 0) Sp(3,R) irrep case (left) and
NCSM (right) for Nmax = 6 and bare JISP16 interaction.
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to nearly 65% for �Ω =18 MeV [Figure 2, blue (left) bars] with 80%-90% of this
symmetry governed by the leading (0 4) irrep. These numbers are consistent with
what has been shown to be a dominance of the leading SU(3) symmetry for SU(3)-
based shell-model studies with realistic interactions in 0�Ω model spaces. It seems
the simplest of Elliott’s collective states can be regarded as a good first-order ap-
proximation in the presence of realistic interactions, whether the latter is restricted
to a 0�Ω model space or the richer multi-�Ω NCSM model spaces.

4 Conclusions

Wavefunctions, which are obtained in a NCSM analysis with the JISP16 realistic
interaction, project at approximately the 80% level onto the leading (three) 0p-0h
irreps of the corresponding Sp-NCSM for the lowest 0+

gs, 2+
1 and 4+

1 states in 12C
and at more than 70% level for the ground state in the closed-shell 16O nucleus.
(While not part of the current analysis, preliminary results indicate that when the
space is expanded to include the most important 2�Ω 2p-2h irreps the percentage
grows by approximately 10%.) The results confirm for the first time the validity of
the Sp(3,R) approach when realistic interactions are invoked and hence demon-
strate the importance of the Sp(3,R) symmetry in light nuclei as well as reaffirm
the value of the simpler SU(3) model upon which it is based.

The results further suggest that a Sp-NCSM extension of the NCSM may be a
practical scheme for achieving convergence to measured B(E2) values without the
need for introducing an effective charge and even for modeling cluster-like phe-
nomena as these modes can be accommodated within the general framework of the
Sp(3,R) model if extended to large model spaces (high Nmax), but with a size that
is typically only a fraction of the NCSM size. This suggests that a Sp-NCSM code
could allow one to extend no-core calculations to higher �Ω configurations and
heavier nuclei that are currently unreachable because the model space is typically
too large to handle, even on the best of modern day computers.
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