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Abstract. A generalization of Richardson-Gaudin models to the rank-2 SO(5) and SO(3,2)
algebras is used to describe systems of two kinds of fermions or bosons interacting through
a pairing force. They are applied to the proton-neutron isovector pairing model and to the In-
teracting Boson Model 2, in the transition from vibration to gamma-soft nuclei, respectively.
In both cases, the integrals of motion and their eigenvalues are obtained.

1 Introduction

The pairing interaction has been used to describe many properties of strongly corre-
lated many-body quantum systems. In the early sixties, Richardson [1] showed how
to exactly solve the pure pairing hamiltonian for fermions and bosons including
non-degenerate single-particle orbits. Independently, Cambiaggio, Rivas and Sara-
ceno [2] demonstrated that the pairing hamiltonian was integrable, which means that
as many integrals of motion as degrees of freedom can be found. In 2001, Dukelsky,
Esebbag and Schuck [3] showed how to generalize Richardson’s solution making
use of analogous work by Gaudin [4] for spin models. Since then, the Richardson-
Gaudin (RG) models have been applied to a wide variety of systems in nuclear,
condensed-matter and atomic and molecular physics. They have the advantage that
they can be used to exactly obtain such physical quantities as energies and occu-
pation probabilities beyond the diagonalization limits, while furthermore serving as
tests or initial guesses for other many-body approaches. Some specific examples
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of applications have been to ultrasmall superconduction grains [5], nuclear super-
conductivity, Bose-Einstein condensates [6] and to mixed systems involving atoms
coupled to molecular dimers in the presence of a Feshbach resonance [7].

All these models are based on several copies of the rank-1 SU(2) and SU(1,1)
algebras, each copy representing an orbit. The integrals of motion and their eigen-
functions and eigenvalues depend on a set of parameters (pair energies) that satisfy
a system of non-linear coupled equations. In 2002, Asorey, Falceto and Sierra [8]
found a set of L integrals of motion and their corresponding eigenvalues for a sys-
tem of L copies of a Lie algebra of arbitrary rank r. They depend on L plus r free
parameters, and can be written in terms of as many families of spectral parameters
as the rank of the algebra. These families of spectral parameters satisfy a system of
generalized Richardson equations. Independently, Ushveridze [9] found the eigen-
functions by making use of the Gaudin algebras.

In this presentation, we study the rank-2 algebras SO(5) and SO(3,2). For a
suitable representation of the generators of the two algebras, we obtain the inte-
grals of motion, their eigenvalues, the associated eigenfunctions and the general-
ized Richardson equations for the two families of spectral parameters. A specific
linear combination of the integrals of motion together with a suitable choice for the
free parameters leads us to two hamiltonians that have been used in models of nu-
clear physics, the proton-neutron isovector pairing model and the Interacting Boson
Model-2 in the transition from vibrational to gamma-unstable nuclei. In both cases,
the hamiltonans that result permit the inclusion of symmetry breaking terms, isospin
symmetry in the SO(5) model and F-spin symmetry in the SO(3,2) model. For both
of the models, we obtain the results for states with an arbitrary number of unpaired
particles. In the SO(5) case, we report a study of the dependence of the spectral pa-
rameters on the isospin symmetry breaking term in the T=0,1 and 2 channels, and
present some results for the nucleus 64Ge assuming a 40Ca core and a pf + g9/2
valence space. In the SO(3,2) case we report a study of the effect on the spectra of
adding a g boson.

2 Integrals of Motion and Thier Eigenvalues for a System of L
Copies of a Rank-r Lie Algebra

The RG models are based on several copies of a Lie Algebra. For the i-th copy we
can write the generators in the Cartan decomposition. On one hand, this includes
the operators that commute with one another (weight operators), which form the so
called Cartan subalgebra. The number of these operators (which we will denote by
Ha) is the rank of the group. The rest of the operators, Eα, are expressed in such
a way that they satisfy the commutation relationship [Ha

i , E
α
i ] = αaEαi . These

operators are called the ladder operators; half of them are raising operators E+α,
and the other half lowering operators,E−α, satisfyingE−α = (E+α)†. In the SU(2)
case, the Cartan or weight operator is Jz and the raising and lowering operators
J+, J−. The α’s are vectors (called roots) that play the role of structure constants.
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There are as many independent roots as the rank of the algebra, so for SO(5) and
SO(3,2) we only need two roots to define the algebraic quantities.

An important algebraic concept is the lowest weight state. This is a state annihi-
lated by all the lowering operators: Eαk

i |Λi〉 = 0 ∀αk < 0. They have the property
of being eigenstates of the Cartan operators and since they are unique their eigen-
values define completely each irreducible representation of the algebra.

With these definitions, the L integrals of motion for a system of L copies of a
Lie algebra in the rational model are:

Ri =
∑
i′ �=i

Xi ·Xi′

zi′ − zi
+ ξaFabh

b
i , (1)

where Xi · Xi′ is the scalar product of the generators, Fab is a matrix that defines
the algebra [10] and hai are the Cartan operators in the Chevaley basis [10]. These
integrals of motion depend on L+r free parameters: zi, i = 1, ..., L and ξa, a =
1, ..., r.

For each set of irreducible representations, labeled by the Dynkin labels [10] of
the lowest weight states Λi, the eigenvalues are:

ri = ξ · F · Λi +
∑
i′ �=i

Λi′ · F · Λi
zi′ − zi

− 1
2

r∑
a=1

Ma∑
α=1

Λi|αa|2
Eaα − zi

, (2)

whereEaα are the ’r’ families of spectral parameters that must satisfy the Richardson
equations. In our case, there are two families, which we denote by {eα} and {ωγ}.
As they determine the wave function and all the observables obtained from the ri,
we will study their behavior in terms of the free parameters of the model.

3 The Isovector Proton-Neutron Pairing Model

3.1 Generators, Integrals of Motion and Eigenvalues

A suitable representation for the generators of the i-th copy of the SO(5) algebra
in terms of the creation and annihilation operators of protons p†i/pi and neutrons,
n†
i/ni is:

T 0
i =

1
2
(p†ipi + p†

ī
pī)−

1
2
(n†
ini + n†

ī
nī) T+

i =
1√
2
(p†ini + p†

ī
nī) (3)

b†−1i = n†
in

†
ī

b†0i =
1√
2
(n†
ip

†
ī
+ p†in

†
ī
) b†+1i = p†ip

†
ī

(4)

Hi =
1
2
(N̂i + N̂ī)− 1 (5)
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and the corresponding hermitian-conjugates of all the raising operators. Operators
(3) form the SU(2) isospin subalgebra. The operators in (4) create a pair of particles
in time-reversed states. The two Cartan generators are T 0

i and Hi, and N̂ is the
number operator.

Associating each copy i to an orbit in the spherical shell model basis i ≡ jm
and choosing a specific linear combination of the integrals of motion, we obtain the
hamiltonian [11]

H =
∑
j

εj(Nj +ΔNpj) +
g

2
T · T + g

∑
μ,jm,j′m′

b†μ,jmbμ,j′m′ . (6)

The first sum is the single-particle energy term. Note that it includes a term
ΔNpj , which modifies the energy of the protons and thus breaks isospin symmetry.
The second sum is the isovector pairing interaction. The free parameters are the
single-particle energies εj , the coupling constant g, and the Δ parameter, which as
just noted measures the isospin symmetry breaking.

The same linear combination of the eigenvalues of the integrals of motion gives
the energy eigenvalues of the hamiltonian (6),

E =
∑
j

εj
[νj

2
(2 +Δ)−Δτj

]
+

M∑
α=1

eα +
Δ

2

M+T0+t∑
β=1

ωβ +
g

2
T0(T0 − 1) , (7)

where νj is the seniority of the j shell (the number of unpaired particles) and τj the
reduced isospin (i.e, the isospin of the unpaired particles).

The first sum gives the single-particle energy contribution of the unpaired par-
ticles. The third, as it is proportional to Δ, has to do with the isospin symmetry
breaking. As the second sum gives the energy of the paired particles and is a sum
over the various pairs, the eα parameters can be interpreted as pair energies.

3.2 Study of the Spectral Parameters in Terms of Isospin Symmetry Breaking

To show how the spectral parameters behave as a function of the isospin breaking
term Δ, we present in Figure 1 three solutions of the Richardson equations for a
system of two protons and two neutrons in two shells in the seniority zero subspace.
The solutions are labeled by the isospin in theΔ→ 0 limit (forΔ �= 0, isospin is not
a good quantum number). It is interesting to remark that in all cases the parameters
are either real or form complex-conjugate pairs, so that the sums that appear in
the expression of the energy (7) are real. Another important feature is that in the
Δ → 0 limit only M-T of the ω parameters are finite. The rest diverge, but as their
contribution to the energy has the form ∼ Δ

∑
γ ωγ the energy remains finite.

3.3 Numerical Calculations for 64Ge with a 40Ca Core in a pfg9/2 Valence
Space

An important feature of RG exactly-solvable models is that they permit calculations
beyond the diagonalization limits. As an example, we present numerical results for
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Figure 1. Spectral parameters eα (blue dashed lines) and ωγ (red solid lines) for a system of
two protons and two neutrons in two shells (j0 = 1/2, j1 = 3/2) with energies ε0 = 0,
ε1 = 1, for a coupling constant g = −1. Left panels are the real part and right panels the
imaginary part, except in the T=1 case where all parameters are real. Only the lowest energy
states of the hamiltonian (6) are represented for each value of T. These energies are plotted in
the sixth panel.

64Ge, with a 40Ca core (i.e., 12 valence protons and 12 valence neutrons) for a
valence space built from the orbits of the pf shell and the g9/2 orbit.

In Figure 2, we plot the spectral parameters in the isospin symmetric limit for
two values of the coupling constant, g=-0.05 MeV (weak coupling) and g=-0.5 MeV
(strong coupling), for the ground state (T=0). Blue circles represent the pair ener-
gies eα, red circles the ωγ parameters and the squares are twice the single-particle
energies of the first three orbits. In the weak coupling limit, there are as many eα
parameters as the degeneracy of the first two shells with a real part roughly twice
the single-particle energy. Physically it means that particles are filling orbits as in a
non-interacting system. As the interaction increases, the real part of the e parame-
ters decreases, and therefore the energy also decreases: correlations make the system
more bound. They also expand in the complex plane. The ω parameters are always
intertwined with them.

As was mentioned these spectral parameters determine not only the energies but
also the wave functions and such physical observables such as occupation numbers.
Such calculations can be found in [11].
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Figure 2. Complex-plane representation of the pair energies e (blue circles) and ω pa-
rameters (red circles). The left panel corresponds to g = −0.05 MeV and the right one
to g = −0.5 MeV. The values of the single -particle energies are εf7/2 = 0.00 MeV,
εp3/2 = 6.00 MeV, εf5/2 = 6.25 MeV, εp1/2 = 7.1 MeV, εg9/2 = 9.60 MeV.

4 The Interacting Boson Model-2

The Interacting Boson Model (IBM), developed by A. Arima and F. Iachello [12],
describes the quadrupole-quadrupole excitations of even-even nuclei in terms of a
system of s and d bosons that microscopically represent fermion pairs. It has proven
to be very powerful in the prediction of properties of many nuclei. The IBM-2
version [13] distinguishes between proton pairs (π bosons) and neutron pairs (ν
bosons), and thus introduces a new quantum number, F spin, which is similar to
isospin but for bosons rather of fermions. It has been found that F-spin SU(2) sym-
metry is approximately preserved in nuclei.

The most general hamiltonian of this model has the form:

H = επNdπ + ενNdν + VQQ +M , (8)

where the first two terms are the single-particle energies, and VQQ is the quadrupole-
quadrupole interaction, which has the form:

VQQ = κππQ
2
π + κπνQπQν + κννQ

2
ν . (9)

The quadrupole operator, Qρ, depends on a free parameter χρ,

Qρ(χρ) = d+
ρ sρ + s+ρ d̃ρ + χρ

[
d+
ρ d̃ρ

](L=2)

. (10)

In the F-spin symmetry limit, the IBM-2 hamiltonian has three dynamical sym-
metries, SU(3), O(6) and U(5), that describe axially symmetric deformed nuclei,
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gamma-unstable nuclei, and vibrational nuclei, respectively. In the latter two cases,
the value of the parameter χρ is zero, both for the π and ν bosons.

The term M in (8) is called the Majorana interaction, and usually has the form
M = ζ[Fmax(Fmax + 1) − F 2]. In the F-spin symmetry limit it is found that
states with F = Fmax, called maximally symmetric states (SS), are the lowest in
energy. These states are the only ones that appear in the IBM1 model, and they are
completely symmetric under the interchange of π and ν bosons. The Majorana term
splits the energy of the states with F < Fmax, the so called mixed symmetry states
(MSS).

4.1 SO(3,2): Generators and Hamiltonian

The generators that close the SO(3,2) commutation relationships for each l-shell in
terms of the creation/annihilation operators of bosons (l†ρ/lρ), ρ = π, ν are:

F 0
l =

1
2
(Nlπ −Nlν) F+

l = l†π · lν F−
l = l†ν · lπ (11)

b†−1l = (−1)l/2l†ν · l†ν b†0l = (−1)l/2l†π · l†ν b†0l = (−1)l/2l†π · l†π (12)

b−1l, b0l, b1l H2
l =

1
2
(N̂πl + N̂νl +Ωl) (13)

As in SO(5), the first three close the F-spin SU(2) subalgebra. Furthermore, b†μl
creates a pair of bosons in time reversal states, and H2

l together with F 0
l form the

Cartan subalgebra.
By taking a particular linear combination of the integrals of motion (1), we ob-

tain the hamiltonian [14]:

H =
∑
l

εl(Nπl +Nνl +ΔNπl)−
g

4

∑
l<l′

l′+l∑
L=|l′−l|

(−1)L

(QLlν l′ν +QLlπl′π) · (QLl′ν lν +QLl′πlπ) , (14)

with
QLlρl′ρ = (l†ρ l̃′ρ − (−1)l+(l+l′)/2l′†ρ l̃ρ)

L . (15)

In the case of l = 0, 2, this hamiltonian takes the form

H = εd(Nπd +Nνd +ΔNπd)−
g

4
(Qπ +Qν)2 , (16)

where Qρ has the same form as the IBM-2 quadrupole operator (10), but with χρ =
0. Thus, while (16) is an IBM-2 hamiltonian, it is not the most general one. It is
limited to describe the transition from U(5) to O(6). Furthermore, it has several other
specific features, namely that the quadrupole-quadrupole interaction that enters is an
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Figure 3. Energy levels for a system of 10 π bosons and 10 ν bosons of the sdg hamiltonian
(14) (right panel) compared to those of the sd hamiltonian (16) (left panel), as a function of the
coupling constant g. The values of the single particle energies are εs = 0 MeV, εd = 1 MeV
and εg = 1.6 MeV. Except for JP = 2+, only the first excited state of each seniority is
shown. SS up to seniority four and MSS up to seniority two are presented. The meaning of
the different types of lines is explained in the text.

F-spin scalar and that it contains a term proportional to Δ that when active breaks F-
spin symmetry. Lastly, it does not contain a specific Majorana term. However, in the
F-spin symmetry limit (Δ → 0) a Majorana term can be added while maintaining
the exact solvability of the model.

The key point of this class of RG models is that we can add other bosons degrees
of freedom and still solve the problem exactly, going beyond what is possible with
diagonalization methods. In particular we can include a g-boson (l = 4), which has
been included, for example, to explain some intruder states in some nuclei such as
192Os or an f-boson (l = 3), which has been introduced to explain negative parity
bands in some isotopes.

4.2 Energy Levels. The Effect of Adding a g Boson

In order to study the effect on the spectra of adding other bosons degrees of freedom,
we plot in Figure 3 the spectra of the s-d hamiltonian (16) (upper panel) and the sdg
hamiltonian in (14) (botton panel), as a function of the coupling constant g, for
a system of 10 π bosons and 10 ν bosons. The calculations were carried out in
the F-spin symmetry limit, for Δ → 0. Each level is obtained by giving different
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values to the seniorities, and they are multiplets of angular momentum, specified
by the labels. Solid lines represent SS and dotted and circled lines represent MSS
with F = Fmax − 1, which as we noted earlier can be shifted in energy by adding
a Majorana term. It can be seen that in the sd case, the g=0 limit corresponds to
a vibrational (U(5)) spectrum, whereas with increasing g a transition to O(6) takes
place. In the sdg case, many more possible values for JP appear. In the figure thicker
solid and circled lines correspond to SS and MSS, respectively, with unpaired g
bosons. Most of the states that also appear in the sd case are relatively unaffected by
the addition of the new boson degree of freedom, except in some cases such as the
first 0+ state or the second 2+

2 state, plotted in red. For these states, in the sd case
the energy goes up with the coupling constant g, while in the sdg case the energy
flattens out.

5 Summary and Conclusions

We have generalized the exactly solvable Richardson-Gaudin models to two alge-
bras of rank-2, SO(5) and SO(3,2). We have obtained the integrals of motion and
their eigenvalues, which are written in terms of two families of spectral parameters
that must satisfy a system of non-linear coupled equations, the so-called Richardson
equations. By choosing appropriate linear combinations of the integrals of motion,
we have derived two pairing hamiltonians, each involving two kinds of particles.
The SO(5) model involves two kinds of fermions, whereas the SO(3,2) model in-
volves two kinds of bosons.

The SO(5) algebra gives rise to an isovector proton-neutron pairing model, but
which includes a one-body term that breaks isospin symmetry. We have studied
the dependence of the spectral parameters as a function of this term. We have also
presented some numerical results for 64Ge with a 40Ca core within the valence shells
fpg9/2, which could not have been done using numerical diagonalization methods.

One possible representation of the SO(3,2) algebra gives rise to a specific ver-
sion of the Interacting Boson Model-2 in the transition region between the dynami-
cal symmetries U(5) and O(6). The hamiltonian we obtain does not have a Majorana
term, but in the F-spin symmetry limit we can add one without affecting its exact
solvability. This model involves only two copies of the Lie algebra, one with l = 0
(the s boson) and one with l = 2 (the d boson). Other boson degrees of freedom have
also been introduced in extended versions of the IBM-2 to explain intruder states (an
l = 4 g boson) or negative-parity bands (an l = 3 f boson) that appear in nuclei. We
have studied the effect of taking the g boson into account within an exactly solvable
SO(3,2) context by comparing the energy levels for an sd hamiltonian with an sdg
hamiltonian for both maximal symmetry states and mixed symmetry states.

The models that we have developed are not limited, however, to proton-neutron
fermion or boson models of nuclei. Any physical problem involving two species of
particles in which pairing is dominant can be modelled in this way. In particular, the
bosonic case could be applied to problems involving a mixture of 97Rb atoms in the
hyperfine states |F = 1,Mf = 1〉, |F = 1,Mf = −1〉.
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