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Abstract. We present an effective Lagrangian model of the pion photoproduction reaction
that we have recently elaborated. We also present a reliable technique to assess the parameters
of the nucleon resonances and results on the quadrupole deformation of the Δ(1232).

1 Introduction

In the last years a great experimental and theoretical effort has been paid to meson
production from the nucleon in order to study the properties of the low-lying nu-
cleon resonances and to assess their parameters. This research is achieved through
the excitation of the resonances by means of photonic or electronic probes and the
study of their decays into mesons (mainly pions) [1]. These parameters are pre-
dicted by several theoretical models of the nucleon and their resonances – quark
models [2, 3], skyrme models [4], Lattice Quantum Chromodynamics (QCD) [5, 6]
– and have to be extracted from experiments through reaction models. The extrac-
tion of the parameters (masses, widths, electromagnetic coupling constants, . . . )
of the nucleon excitations from experimental data has become important in order
to assess their properties and to compare with hadron models. The comparison of
theoretical predictions from nucleonic models to the results from reaction models
provides a guide to improve hadron models and to discriminate among them. To-
gether with pion scattering on the nucleon, single pion photoproduction is the most
used mechanism to study the low-lying baryon spectrum. The quantity and qual-
ity of the experimental database [7] has been significantly improved thanks to the
extensive experimental programs carried out at LEGS (Brookhaven, USA) [8] and
MAMI (Mainz, Germany) [9–11]. In this Proceeding we present an outlook of the
pion photoproduction model that we have recently elaborated [12,13] based upon an
effective Lagrangian approach (ELA) and the technique we have applied to assess
the parameters of the nucleon resonances. We also provide some results, and among
them results on the quadrupole deformation of the Δ(1232).
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2 Pion Photoproduction

The differential cross section for the γN → πN reaction (Figure 1) can be written
in the center of mass reference system as:
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Figure 1. Kinematics of the pion photoproduction process.

The transition probability is:

|M|2 =
1
4

∑
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|Aλ1λ2λγ |2, (2)

where Aλ1λ2λγ is the invariant amplitude, with photon polarization λγ , initial nu-
cleon helicity λ1, and final nucleon helicity λ2. Because of parity, among the eight
helicity amplitudes, only four of them are independent:
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Subindices stand for: N , non-spin flip; SF , spin flip with photon and initial nu-
cleon having parallel spins; SA, spin flip with photon and initial nucleon having
antiparallel spins; and D, double spin flip.

If we are able to calculate these four invariant amplitudes we can calculate any
physical observable (differential cross sections, asymmetries, electromagnetic mul-
tipoles, . . . ). Therefore, the key point to study pion photoproduction is the con-
struction of a reaction model which allows to calculate the invariant amplitudes and
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Figure 2. Feynman diagrams for Born terms: (a) s channel, (b) u channel, (c) t channel, and
(d) Kroll-Rudermann.

relate the results on physical observables to the intrinsic properties of the involved
particles. We have developed a model based upon effective Lagrangians and we pro-
vide an outlook in next section. With these Lagrangians we calculate the Feynman
diagrams in Figures 2 and 3 and we obtain the invariant amplitudes.

3 The Pion Photoproduction Model

In [12, 13] we have developed a pion photoproduction model up to 1 GeV of pho-
ton energy based upon effective Lagrangians. In what follows we provide a brief
description of the model. In addition to Born (Figure 2) and vector meson exchange
terms (ρ and ω, diagram (e) in Figure 3), the model includes all the four star reso-
nances in Particle Data Group (PDG) [14] up to 1.7 GeV mass and up to spin-3/2:
Δ(1232), N(1440), N(1520), Δ(1620), N(1650), and Δ(1700) — diagrams (f ) and
(g) in Figure 3. Born terms are calculated using the Lagrangian:

LBorn =− ieFV1 Âαεjk3πj (∂απk)− eÂαFV1 N̄γα
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(7)

where e is the absolute value of the electron charge, fπN the pion nucleon coupling
constant, FVj = F pj − Fnj and FSj = F pj + Fnj are the isovector and isoscalar

nucleon form factors, Fμν = ∂μÂν − ∂νÂμ is the electromagnetic field (Âμ stands
for the photon field), N the nucleon field, and πj the pion field. The coupling to
the pion has been chosen pseudovector in order to ensure the correct low energy
behavior and parity.

Figure 3. Feynman diagrams for vector meson exchange (e) and resonance excitations: (f ) s
channel and (g) u channel.
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The main advantages of our model compared to previous ones resides on the
treatment of resonances. In particular, we avoid some pathologies in the Lagrangians
of the spin-3/2 resonances (such as Δ(1232)), present in previous models, imple-
menting a modern approach due to Pascalutsa [15]. Under this approach the (spin-
3/2 resonance)-nucleon-pion and the (spin-3/2 resonance)-nucleon-photon vertices
have to fulfill the condition qαOα... = 0 where q is the four-momentum of the spin-
3/2 particle,α the vertex index which couples to the spin-3/2 field, and the dots stand
for other possible indices. In particular, we write the simplest interacting (spin-3/2
resonance)-nucleon-pion Lagrangian as [15]

Lint = − h

fπM∗ N̄εμνλβγ
βγ5

(
∂μN∗ν

j

) (
∂λπj

)
+ H.c., (8)

where H.c. stands for hermitian conjugate, h is the strong coupling constant, fπ =
92.3 MeV is the leptonic decay constant of the pion,M∗ the mass of the resonance,
and πj , N , and N∗ν

j , the pion, nucleon, and spin-3/2 fields respectively.
The model also displays chiral symmetry, gauge invariance, and crossing sym-

metry. The dressing of the resonances is considered by means of a phenomenologi-
cal width which takes into account decays into one π, one η, and two π. The width
is built in order to fulfill crossing symmetry and contributes to both s and u channels
of the resonances.

For the numerical calculations we include form factors for Born terms and vector
mesons, in order to regularize the high energy behaviour of these terms we choose
form factors as suggested by Davidson and Workman [16] that allow to fulfill gauge
invariance and crossing symmetry:

F̂B(s, u, t) =F (s) + F (u) +G(t)− F (s)F (u)− F (s)G(t) − F (u)G(t)
+ F (s)F (u)G(t),

(9)

where
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π

)2
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For vector mesons we adopt F̂V (t) = G(t) with the change mπ → mV . In order
to have as few free parameters as possible in the numerical calculations we use the
same Λ for both vector mesons and Born terms.

We assume that the final state interactions (FSI) factorize and can be included
through the distortion of the πN final state wave function. A detailed calculation of
the distortion would require one to calculate higher order pion loops or to develop a
phenomenological potential FSI model. The first approach is overwhelmingly com-
plex and the second would introduce additional model-dependencies, which are to
be avoided in the present analysis, in as much as we are concerned here with the bare
properties of the resonances. We rather include FSI in a phenomenological way by
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adding a phase δFSI to the electromagnetic multipoles. We determine this phase so
that the total phase of the electromagnetic multipole is identical to the one of the
energy dependent solution of SAID [7]. In this way we are able to disentangle the
electromagnetic vertex from FSI effects.

In order to obtain a reliable set of electromagnetic coupling constants of the nu-
cleon resonances we have fitted the experimental electromagnetic multipoles using
modern minimization techniques based upon genetic algorithms. In next section we
explain the fitting procedure.

4 Fitting Procedure

In order to assess the parameters of the model we had to minimize the function χ2

defined by

χ2 =
m∑
j=1

[
Mexp

j −Mth
j (λ1, . . . , λn)

ΔMexp
j

]2

, (12)

where Mexp stands for the current energy independent extraction of the multipole
analysis of SAID up to 1 GeV forE0+,M1−,E1+,M1+,E2−, andM2− multipoles
in the three isospin channels I = 3

2 , p, n for the γp → π0p process [7]. ΔMexp is
the error and Mth is the multipole given by the model which depends on the pa-
rameters λ1, . . . , λn, which stand for the electromagnetic coupling constans of the
resonances and the cutoffΛ. The masses and the widths of the resonances have been
taken from the multichannel analysis of Vrana, Dytman, and Lee [17]. Electromag-
netic multipoles are complex quantities and we have taken into account 763 data for
the real part of the multipoles and the same amount for the imaginary part. Thus,
m = 1526 data points have been used in the fits.

We have decided to fit electromagnetic multipoles instead of any other physical
observable for two reasons mainly. The first one is that electromagnetic multipoles
are more sensitive to coupling properties than are other observables so any defi-
ciency in the model shows up much more clearly. The second is that all the observ-
ables can be expressed in terms of the multipoles, thus, if the multipoles are properly
fitted by the model, so should be the other observables.

In order to fit the data and determine the best parameters of the resonances we
have written a genetic algorithm combined with the E04FCF routine from NAG
libraries [18]. Although genetic algorithms are computationally more expensive than
other algorithms, in a minimization problem it is much less likely for them to get
stuck at local minima than for other methods, namely gradient based minimization
methods. Thus, in a multiparameter minimization like the one we face here it is
probably the best possibility to search for the minimum [12, 19].

Our minimization strategy is as follows:

1. First, the genetic algorithm has been run 400 generations. The first generation
is compound by individuals randomly generated within the reasonable values
of the parameters. We do not really need so many generations, but we preferred
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to let the algorithm run more generations than necessary in order to ensure con-
vergence.

2. When the 400 generations have been run, we use the genetic algorithm solution
as the initial value for the E04FCF routine from NAG libraries [18]. We use
this routine for fine tunning. The E04FCF routine implements an algorithm
that allows to find an unconstrained minimum of a sum of square

Minimize F (x1, . . . , xn) =
m∑
j=1

|fj (x1, . . . , xn) |2, (13)

of m nonlinear functions in n variables (m ≥ n). This algorithm does not re-
quire to know derivatives. From a starting point x(1)

1 , . . . , x(1)
n (in our case

supplied by the genetic algorithm) the routine applies a Quasi-Newton method
in order to reach the minimum. This method uses a finite-difference approxi-
mation to the Hessian matrix to define the search direction. It is a very accurate
and fast converging algorithm once we have an initial solution close to the mini-
mum we seek. Therefore, it is perfect for our fine tunning purpouse. If we try to
solve our optimization problem by means of the E04FCF routine alone it shows
completely useless and no reliable results are obtained because it gets stuck in
the first local minimum found.

3. We store the solution and we start again with a different seed for the initial
population of the genetic algorithm. After thirty runs of the minimization code,
we have thirty different minima. We use them to get new ranges (λmaxj , λminj )
for the parameters. With these new ranges we start again and repeat the process
until we find that all the χ2 divided by χ2

min are close to unity.

In Figure 4 we provide a sample of the fits to the electromagnetic multipoles that
we obtain.

5 Quadrupole Deformation of the Δ(1232)

An important issue that can be studied through pion photoproduction from the nu-
cleon is the existence of a quadrupole deformation in its first excited state, the
Δ(1232). Within the quark model, a single spin flip is the standard picture for the
photoexcitation of the nucleon into a Δ(1232). If we assume spherically symmetric
(L = 0) radial wave functions of both parent and daughter, an E2 transition can-
not take place, and therefore, a non-vanishing E2 multipolarity evokes a deformed
nucleon picture [20].

Over the last few years much effort has been invested in the determination of
quadrupole deformation in the nucleon [1, 21]. Because the spin of the nucleon is
1/2, a possible intrinsic quadrupole deformation is not directly observable and its
study requires research on its lowest-lying excitation – Δ(1232) – and its decay
through pion emission. Hints on the possible deformation will be deduced via the
E2/M1 Ratio (EMR).
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Figure 4. Electromagnetic multipoles. Curve conventions: solid, real part of the multipole;
dashed, imaginary part of the multipole.

Caution must be taken with the various definitions of EMR employed in the lit-
erature. We should distinguish between the intrinsic (or bare) EMR of the Δ(1232)
and the directly measured value which is often called physical or dressed EMR
value [23, 24] and which is obtained as the ratio between the imaginary parts of

E
3/2
1+ and M3/2

1+ at the Eγ value at which Re
[
M

3/2
1+

]
= 0 = Re

[
E

3/2
1+

]
. Since all

the reaction models are fitted to the experimental electromagnetic multipoles, they
generally reproduce the physical EMR value. We obtain

EMRphysical =
Im

[
E

3/2
1+

]
Im

[
M

3/2
1+

] × 100% = (−3.9± 1.1)%. (14)

However, this measured EMR value is not easily computed with the theoretical
models of the nucleon and its resonances. Instead, in order to compare to models of
nucleonic structure, it is better to extract the bare EMR value of Δ(1232) which is
defined as:

EMRbare =
G
Δ(1232)
E

G
Δ(1232)
M

× 100%, (15)

This depends only on the intrinsic characteristics of the Δ(1232) and can thus
be compared directly to predictions from nucleonic models. It is not, however, di-
rectly measurable but must be inferred (in a model dependent way) from reac-
tion models. The intrinsic quadrupole deformation of the Δ(1232) is found to be
EMR= (−1.30± 0.52)%, indicative of a small oblate deformation. In Table 1 we
compare our EMR values (bare and physical) to the ones extracted by other authors
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Table 1. Comparison of EMR values from nucleonic models and EMR values extracted from
data predicted through several reaction models.

Physical EMR, experiments EMR Ref.

LEGS Collaboration (Brookhaven) (−3.07 ± 0.26 ± 0.24) % [8]

A1 Collaboration (Mainz) (−2.28 ± 0.29 ± 0.20) % [10]

A2 Collaboration (Mainz) (−2.74 ± 0.03 ± 0.30) % [11]

Particle Data Group (World average) (−2.5 ± 0.5) % [14]

Physical EMR, reaction models EMR Ref.

Fuda and Alharbi −2.09% [22]

Pascalutsa and Tjon (−2.4 ± 0.1)% [23]

Sato and Lee −2.7% [24]

Fernández-Ramı́rez et al. (−3.9 ± 1.1) % [25]

Bare EMR, reaction models EMR Ref.

Pascalutsa and Tjon (3.8 ± 1.6)% [23]

Sato and Lee −1.3% [24]

Davidson et al. −1.45% [26]

Garcilazo and Moya de Guerra −1.42% [27]

Vanderhaeghen et al. −1.43% [28]

Fernández-Ramı́rez et al. (−1.30 ± 0.52) % [25]

Bare EMR, nucleonic models EMR Ref.

Non-relativistic quark model 0% [2]

Constituent quark model −3.5% [3]

Skyrme model (−3.5 ± 1.5)% [4]

Lattice QCD (Leinweber et al.) (3 ± 8)% [5]

Lattice QCD (Alexandrou et al.) [6]

(Q2 = 0.1 GeV2, mπ = 0) (−1.93 ± 0.94)%

(Q2 = 0.1 GeV2, mπ = 370 MeV) (−1.40 ± 0.60)%

using other models for pion photoproduction, as well as to predictions of nucleonic
models. This extraction reconciles results from experiments (physical EMR) with
the ones obtained using Lattice QCD (bare EMR) within a consistent and sound
framework.
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