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Abstract. A supersymmetric extension of the dynamical symmetry group SpB(12, R)
of the symplectic Interacting Vector Boson Model /IVBM/, to the orthosymplectic group
OSp(4/12, R) is developed in order to incorporate fermion degrees of freedom into nuclear
dynamics and to encompasse the treatment of odd mass nuclei. The bosonic sector of the
supergroup is used to describe the complex collective spectra of the neighboring even-even
nuclei and is considered as a core structure of the odd nucleus. The fermionic sector is repre-
sented by the fermion spin group SUF (2) ⊂ OF (4). The so obtained, new exactly solvable
limiting case is applied for the description of the nuclear collective spectra of odd mass nuclei.
The theoretical predictions for different collective bands in odd mass nuclei from the actinide
region are compared with the experiment. The obtained results reveal the applicability of the
models extension.

1 Introduction

Symmetry is an important concept in nuclear physics. In finite many-body systems
of this type, it appears as time reversal, parity, and rotational invariance, but also in
the form of dynamical symmetries.

Many collective properties of the nuclei have been investigated using models
based on dynamical groups. One of the most popular and widely used models of
this type are the Interacting Boson Model (IBM) [1] and its extensions [2,3] as well
as the symplectic model [4], based on the group Sp(6, R). In them, one obtains
bands of collective states which span irreducible representations of the correspond-
ing dynamical groups and whose corresponding properties, such as energy levels
and electromagnetic transition strengths, can be determined by algebraic methods.

It is well known that nucleons have intrinsic spins and that there are strong
spin-orbit interactions. Moreover, the experiment has revealed, that the presence of
spin does not prevent the appearance of rotational bands. It also established that the
rotational character of the different collective bands is similar for neighboring even-
even and odd-even nuclei far from closed shells. For the description of the nuclear
spectra of such even-even nuclei the above mentioned variety of boson models is
used. This is possible because in the even-even nuclei we consider pairs of nucleons
coupled to integer angular momentum. However, this is not the case for odd mass
nuclei. Thus, the following question naturally arises: how to incorporate fermion
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degrees of freedom into the nuclear dynamics in a way that the rotational character
of the collective bands is preserved.

The natural extension of IBM, the Interacting Boson-Fermion Model (IBFM)
[5], which includes single-particle (fermion) degrees of freedom in addition to the
collective (boson) ones, have provided in the last decays a unified framework for
the description of even-even and odd-even nuclei distant from closed shell configu-
rations, at least in the low-angular momentum domain.

For the description of odd−A nuclei, a fermion needs to be coupled to the N
boson system. This can be done by a semimicroscopical approach which relies on
seniority in the nuclear shell model [2]. As an alternative to this, in the IBFM ap-
proach, Hamiltonians exhibiting dynamical Bose-Fermi symmetries, that are ana-
lytically solvable [5] are constructed. Thus, the extension of the IBM for the case of
odd mass nuclei leads to the group structure UBπ (6) ⊗ UBν (6) ⊗ UF (m) (IBFM-2)
or UB(6) ⊗ UF (m) (IBFM-1), where m =

∑
j(2j + 1) is the dimension of the

single-particle space. Obviously, in the general case for arbitrary m− values, ana-
lytical expressions for the nuclear levels would be too cumbersome and will contain
too many parameters. Moreover, orbitals higher in energy than those of the valence
shell might play a role and have to be included in the model, thus breaking the su-
persymmetric scheme. Therefore, numerical calculations have to be performed with
schematic Hamiltonians. These deficiencies, motivate the development of the new
extension of the IVBM, which will be based on the success of the boson description
of the even-even nuclei, but will include the fermion degrees of freedom in a simple
and straightforward way, that still leads to exact analytic solutions.

In the early 1980s, a boson-number-preserving version of the phenomenologi-
cal algebraic Interacting Vector Boson Model (IVBM) [6] was introduced and ap-
plied successfully [7] to a description of the low-lying collective rotational spec-
tra of the even-even medium and heavy mass nuclei. With the aim of extending
these applications to incorporate new experimental data on states with higher spins
and to incorporate new excited bands, we explored the symplectic extension of the
IVBM [8], for which the dynamical symmetry group is Sp(12, R). This extension
is realized from, and has its physical interpretation over basis states of its maximal
compact subgroup U (6) ⊂ Sp(12, R), and resulted in the description of various
excited bands of both positive and negative parity of complex systems exhibiting
rotation-vibrational spectra. With the present work we extend the earlier applica-
tions of IVBM for the description of the ground and first excited positive and neg-
ative bands of odd mass nuclei. In order to do this we propose a new dynamical
symmetry and apply it to the real odd nuclear systems.

Thus, in this paper a supersymmetric extension of the dynamical symmetry
group SpB(12, R) of the symplectic Interacting Vector Boson Model to the or-
thosymplectic group OSp(4/12, R) is presented in order to incorporate fermion
degrees of freedom into the nuclear dynamics and in doing so to be able to treat
the spectra of odd mass nuclei. The bosonic sector (described by SpB(12, R)) of
the supergroup is used to describe the complex collective spectra of the neighbor-
ing even-even nuclei and is considered as a core structure of the odd nucleus, while
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through its fermionic sector the fermion spin group SUF (2) ⊂ OF (4) is involved
into the algebraic considerations of the collective states of the odd nucleus. In this
way, we present here a new exactly solvable limiting case, based on the reduction of
SpB(12, R) through its maximal compact subgroup UB(6). The theoretical predic-
tions for different collective bands of both positive and negative parity for odd mass
nuclei from actinide and rare earth region are compared with the experiment. The
obtained results confirm the extended applicability of the model.

2 The Inclusion of Spin

In order to incorporate the intrinsic spin degrees of freedom into the symplectic
IVBM, we extend the dynamical algebra of Sp(12, R) to the orthosymplectic alge-
bra of OSp(4/12, R). For this purpose we introduce a particle (quasiparticle) with
spin S = 1/2� and consider a simple core plus particle picture. Thus, in addition of
the boson collective degrees of freedom (described by dynamical symmetry group
Sp(12, R)) we introduce creation and annihilation operators a+

j and aj , which sat-
isfy the anticommutation relations

{a+
i , a

+
j } = {ai, aj} = 0,

{ai, a+
j } = δij , i, j = 1, 2 (1)

All bilinear combinations of a+
j and aj , namely

fij = a+
i a

+
j ,

gij = aiaj , (2)

Cij = (a+
i aj − aja

+
i )/2 (3)

generate the (quasispin) Lie algebra of OF (4). The number preserving operators (3)
generate maximal compact subalgebra of OF (4), i.e. UF (2).

It is known that the spin group is SUF (2), which can be easily obtained from
UF (2) excluding the number operator NF . From hereafter the upper script F or B
is referred to boson or fermion degrees of freedom, respectively.

Noting that the following embedding exists SUF (2) ⊂ OF (4), we make su-
persymmetric extension of the IVBM which is defined through the chain (4), where
bellow the different subgroups the quantum numbers characterizing their irreducible
representations are given. We will point out only that, when restricted to the group
UB(6), each irrep of the group SpB(12, R) decomposes into irreps of the subgroup
characterized by the totaly symmetric representations [8,9] [N, 05]6 ≡ [N ]6, where
N = 0, 2, 4, . . . or N = 1, 3, 5, . . .. We consider only the even (N -even) irreducible
representation of SpB(12, R) and will further omit the superscriptB for the number
of bosons N . The reduction of the latter to the rotational group SO(3) through its
compact subgroup UB(6) is given in details in [8], so we will not consider it here.
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OSp(4/12, R) ⊃ OF (4) ⊗ SpB(12, R)
⇓ ⇓
UF (2) ⊗ UB(6)
⇓ ⇓
SUF (2) ⊗ SUB(3)× UBT (2)
S (λ, μ) ⇐⇒ (N,T )

↘ ⇓
⊗ SOB(3)× U(1)

L T0

⇓
SpinBF (3) ⊃ SpinBF (2),

J J0

(4)

From (4) it can be seen that the coupling of the boson and fermion degrees of free-
dom is done on the level of the angular momenta.

3 The Basis States and Energy Spectrum

We can label the basis states according to the chain (4) as:

| [N ]6; (N,T );KL;S; JJ0;T0 〉, (5)

where [N ]6− is the U(6) labeling quantum number, (N,T )− are the SU(3) quan-
tum numbers characterizing the core excitations, K is the multiplicity index in the
reduction SU(3) ⊂ SO(3), L is the core angular momentum, S− is the spin of the
odd particle, J, J0 are the total (coupled) angular momentum and its third projection,
and T ,T0 are the pseudospin and its third projection, respectively.

The infinite set of basis states classified according to the reduction chain (4) are
schematically shown in Table 1. The fourth and fifth columns show the SOB(3)
content of the SUB(3) group, given by the standard Elliott’s reduction rules [10],
while in the next column are given the possible values of the common angular mo-
mentum J , obtained by coupling of the orbital momentum L with the spin S. In the
final column are given the possible values for the quantum number KJ = K ± 1/2,
which are used to label the different collective bands. The detailed procedure for
construction of the basis states (5) will be given in forthcoming paper [11].

The Hamiltonian can be written as linear combination of the Casimir operators
of the different subgroups in (4):

H = aN + bN2 + α3T
2 + β′

3L
2 + α1T

2
0

+ ηS2 + γ′J2 + ζJ2
0 (6)

and it is obviously diagonal in the basis (5) labeled by the quantum numbers of their
representations. Then the eigenvalues of the Hamiltonian (6), that yield the spectrum
of the odd mass system are:
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Table 1. Classification scheme of basis states (5) according the decompositions given by the
chain (4).

N T (λ, μ) K L J KJ

0 0 (0, 0) 0 0 1/2 1/2

2 1 (2, 0) 0 0, 2 1/2; 3/2, 5/2 1/2

0 (0, 1) 0 1 1/2; 3/2 1/2

2 (4, 0) 0 0, 2, 4 1/2; 3/2, 5/2; 7/2, 9/2 1/2

4 1 (2, 1) 1 1, 2, 3 1/2, 3/2; 3/2, 5/2; 5/2, 7/2 1/2; 3/2

0 (0, 2) 0 0, 2 1/2; 3/2, 5/2 1/2

3 (6, 0) 0 0, 2, 4, 6
1/2; 3/2, 5/2; 7/2, 9/2;

11/2, 13/2
1/2

2 (4, 1) 1 1, 2, 3, 4, 5
1/2, 3/2; 3/2, 5/2; 5/2, 7/2;

7/2, 9/2; 9/2, 11/2
1/2; 3/2

6 1 (2, 2) 2 2, 3, 4 3/2, 5/2; 5/2, 7/2; 7/2, 9/2 3/2; 5/2

0 0, 2 1/2; 3/2, 5/2 1/2

0 (0, 3) 0 1, 3 1/2, 3/2; 5/2, 7/2 1/2

4 (8, 0) 0 0, 2, 4, 6, 8
1/2; 3/2, 5/2; 7/2, 9/2;

11/2, 13/2; 15/2, 17/2
1/2

3 (6, 1) 1 1, 2, 3, 4, 5, 6, 7

1/2, 3/2; 3/2, 5/2; 5/2, 7/2;

7/2, 9/2; 9/2, 11/2;

11/2, 13/2; 13/2, 15/2

1/2; 3/2

2 (4, 2) 2 2, 3, 4, 5, 6
3/2, 5/2; 5/2, 7/2; 7/2, 9/2;

9/2, 11/2; 11/2, 13/2
3/2; 5/2

8 0 0, 2, 4 1/2; 3/2, 5/2; 7/2, 9/2 1/2

1 (2, 3) 2 2, 3, 4, 5
3/2, 5/2; 5/2, 7/2; 7/2, 9/2;

9/2, 11/2
3/2; 5/2

0 1, 3 1/2, 3/2; 5/2, 7/2 1/2

0 (0, 4) 0 0, 2, 4 1/2; 3/2, 5/2; 7/2, 9/2 1/2

...
...

...
...

...
...

...

E(N ;T, T0;L, S; J, J0) = aN + bN2 + α3T (T + 1) + β′
3L(L+ 1) + α1T

2
0

+ ηS(S + 1) + γ′J(J + 1) + ζJ2
0 . (7)

We note that only the last three terms of (6) come from the supersymmetric exten-
sion. We choose parameters β′

3 = 1
2β3 and γ′ = 1

2γ instead of β3 and γ in order to
obtain the Hamiltonian form of ref. [8] (setting β3 = γ), when for the case S = 0
(hence J = L) we recover the symplectic structure of the IVBM.
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4 Application of the New Dynamical Symmetry

In this paper we expand the earlier application of the IVBM [8], developed for the
description of the collective bands of even-even nuclei, in order to include in our
considerations the case of odd mass nuclei.

The most important application of the UB(6) ⊂ SpB(12, R) limit of the theory,
which is part of the reduction of (4), is the possibility it affords for describing both
even and odd parity bands up to very high angular momentum. In order to do this
we first have to identify the experimentally observed bands with the sequences of
basis states from the Table 1. As we deal with the (ortho) symplectic extension of
the boson representations of the number preserving UB(6) symmetry we are able
to consider all even eigenvalues of the number of vector bosons N with the cor-
responding set of pseudospins T , which uniquely define the SUB(3) irreps (λ, μ)
given in the third column of Table 1.

In the present application of the model several points are of importance. First,
following [8] we define the parity of the states as π = (−1)T . This allows us to
describe both positive and negative parity bands. The latter requires only the proper
choice of the core band heads, on which the corresponding odd−A collective bands
are developed. Our choice is motivated by the fact, which has been always under-
stood in nuclear physics, that well defined rotational bands can exist only when
they are adiabatic relative to other degrees of freedom. In this way (in the adia-
batic approximation) the single particle motion follows the correlated collective one
of all nucleons. This allows us to assume that after the coupling of particle (with
S = 1/2�) to the boson core (collective degrees of freedom) the resulted states will
possess all the collective properties of the core, including the parity.

The second point is the use of the algebraic concept of yrast states, also intro-
duced in [8]. According to this notion we consider as yrast states the states with
given L, which minimize the energy (7) with respect to the number of vector bosons
N that build them. In the present considerations the yrast conditions yield relations
between the number of bosons N and the coupled angular momentum J that char-
acterizes each collective state. By means of it and taking into account the parity we
can write the following relations if the ground state band (GSB) of the odd mass
nuclei is:

Kπ = 1
2

+
, N = 2(J − 1

2 )

Kπ = 7
2

+
, N = 2(J − 1

2 ) + 4 (8)

Kπ = 1
2

−
, N = 2(J + 1

2 ).

From (8) one can see that to each of the states with given angular momentum J
corresponds a definite number of bosons N . So for the description of the GSB, for
example Kπ = 1

2

+
, we use the sequence of states with different numbers of bosons

N = 2(J − 1
2 ) = 0, 2, 4, . . . for the corresponding values J = 1

2 ,
3
2 ,

5
2 , . . . and

pseudospin T = 0 (T0 = 0) of Table 1.
The final point is related to the description of the excited bands. It was estab-

lished [12], that for the proper reproduction of the collective behavior of the different
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Figure 1. Comparison of the theoretical and experimental energies for ground and excited
bands of 237U (left) and 169Yb (right).

bands their band head structure has to be taken into account which in our case is de-
termined by the minimal or initial number of bosons Ni. The latter determines the
starting position of each excited band.

Thus, for the description of the different excited bands, we first determine theNi
of the band head structure and then we use the chosen correspondence between the
states of the corresponding band to the sequence of basis states with N = Ni, Ni +
2, Ni + 4, . . . (ΔN = 2) and T = even = fixed or T = odd = fixed for
positive or negative parity, respectively. We will point out that the (ortho) symplectic
structure of the model space give us rather rich possibilities to map basis states onto
experimentally observed ones. Thus, another possibility of developing the sequence
of basis states is to take again N = Ni, Ni+2, Ni+4, . . . (ΔN = 2) but to change
T = Ti, Ti + 2, Ti + 4, . . . (ΔT = 2) in such a way, that the parity of band states is
preserved even or odd, respectively.

Putting all pieces together, we apply our model considerations for the descrip-
tion of the nuclear spectra of four odd mass nuclei from the rare earth and actinide
region. The phenomenological model parameters a, b, α3, β3, η, γ and ζ are evalu-
ated by a fit to the experimental data [13]. The comparison between the experimen-
tal spectra and our calculations using the values of the model parameters given in
Table 2 for the nuclei 237U, 169Yb, 173Hf and 181Pt is illustrated in Figures 1 and 2.
In Table 2 the values of Ni, pseudospin T , orbital momentum L and the number
of experimental states s are also given. From it one can see that in addition to the
ground state band, the first excited bands with positive and negative parity are also
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Table 2. Values of the parameters of the model Hamiltonian (6) obtained in the fitting to the
experimental spectra of the considered nuclei.

Nucl. bands s T N L Ni χ2 parameters
237U

GSB: 238U 16 0 2L 0 0.0063 a = 0.01686

(Kπ = 0+) b = −0.00034

Kπ
gb = 1/2+ 6 0 2(J − 1

2
) J − 1

2
0 0.0002 α3 = 0.00985

Kπ = 5/2+ 5 2 2(J − 1
2
) J − 1

2
4 0.0002 β3 = 0.00576

Kπ = 7/2− 5 3 2(J − 1
2
) + 14 J − 1

2
20 0.00005 η = −0.02998

γ = 0.00497

ζ = −0.01318

169Yb

GSB: 168Yb 20 0 2L 0 0.0054 a = 0.03662

(Kπ = 0+) b = 0.00088

Kπ
gb = 7/2+ 26 2 2(J − 1

2
) + 4 J − 1

2
10 0.0385 α3 = −0.06185

Kπ = 1/2− 4 1 2(J + 1
2
) J − 1

2
2 0.0029 β3 = 0.00338

Kπ = 5/2+ 4 4 2(J + 1
2
) + 12 J − 1

2
18 0.0178 η = −0.49477

γ = 0.00241

ζ = 4.5990

173Hf

GSB: 174Hf 9 0 2L 0 0.0055 a = 0.016629

(Kπ = 0+) b = −0.00128

Kπ
gb = 1/2− 17 1 2(J + 1

2
) J ∓ 1

2
2 0.0005 α3 = −0.01710

β3 = 0.01488

η = −0.04559

γ = 0.01377

181Pt

GSB: 182Pt 9 0 2L 0 0.0036 a = 0.03351

(Kπ = 0+) b = −0.00124

Kπ
gb = 1/2− 17 1 2(J + 1

2
) J ∓ 1

2
2 0.0021 α3 = −0.03937

β3 = 0.01359

η = −0.010498

γ = 0.01207

included. From Table 2, where χ2 is also given, and Figures 1 and 2 one can see
the good agreement between the theoretical predictions and the experimental data.
In the Figures 1 and 2, for comparison, the ground state band of the neighboring
even-even nucleus is given too, described by the same set of model parameters.
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Figure 2. Comparison of the theoretical and experimental energies for ground bands of 173Hf
(left) and 181Pt (right).

Two interesting examples are shown in Figure 2, from which it can be seen
that the states of the ground band of the odd mass nucleus are grouped in almost
degenerate doublets. Such doublets are easily described in the present approach,
when the two members of a certain doublet are taken from the basis states, char-
acterized by the same number of bosons N , i. e. to the experimentally observed
states of the doublet we put into correspondence the basis states with consequent
values of J = L ± 1/2 and the same N : | [N ]6; (N,T );KL;S; J − 1, J ′

0;T0 〉
and | [N ]6; (N,T );KL;S; JJ0;T0 〉. Such doublet splitting is an indicator for the
presence of “pseudospin” (not to be confused with pseudospin of the vector bosons)
symmetry.

5 Conclusions

In this work we extended the dynamical symmetry group Sp(12, R) of the IVBM
to the orthosymplectic one OSp(4/12, R). We introduced the fermion degrees of
freedom by means of including a particle (quasiparticle) with spin S = 1/2� and
exploiting the corresponding reduction OF (4) ⊃ SUF (2).

Further, the basis states of the odd systems are classified by the new dynamical
(super)symmetry (4) and the model Hamiltonian is written in terms of the first and
second order invariants of the groups from the corresponding reduction chain. Hence
the problem is exactly solvable within the framework of the IVBM which, in turn,
yields a simple and straightforward application to real nuclear systems.
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We present results that were obtained through a phenomenological fit of the
models’ predictions for the spectra of collective states to the experimental data for
odd−A nuclei from the rare-earth and actinide major shells exhibiting rotational
spectra. The good agreement between the theoretical and the experimental results
confirms the applicability of the newly proposed dynamical symmetry of the IVBM.

The success is based first on the symplectic extension of the model which allow
the mixing of the basic collective modes −rotational and vibrational ones. The su-
persymmetry groupOSp(4/12, R) which is natural generalization of the dynamical
symmetry group Sp(12, R) of the IVBM could be further used to examine the corre-
lations between the spectroscopic properties of the neighboring even-even, odd-even
and odd-odd spectra of the neighboring nuclei and the underlying supersymmetry
which might be considered in nuclear physics as proved experimentally [14]. These
investigations are the subject of the forthcoming paper, but our preliminary results
presented in this work already suggest the possibility to obtain the typical signatures
of the nuclear supersymmetry.
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