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Abstract. The attempts to find the right (underlying) theory for the nuclear force have a
long and stimulating history. Already in 1953, Hans Bethe stated that “more man-hours have
been given to this problem than to any other scientific question in the history of mankind”.
In search for the nature of the nuclear force, the idea of sub-nuclear particles was created
which, eventually, generated the field of particle physics. I will review this productive history
of hope, error, and desperation. Finally, I will discuss recent ideas which apply the concept
of an effective field theory to low-energy QCD. There are indications that this concept may
provide the right framework to properly understand nuclear forces.

1 Historical Perspective

The theory of nuclear forces has a long history (cf. Table 1). Based upon the semi-
nal idea by Yukawa [1], first field-theoretic attempts to derive the nucleon-nucleon
(NN) interaction focused on pion-exchange. While the one-pion exchange turned
out to be very useful in explaining NN scattering data and the properties of the
deuteron [2], multi-pion exchange was beset with serious ambiguities [3, 4]. Thus,
the “pion theories” of the 1950s are generally judged as failures – for reasons we
understand today: pion dynamics is constrained by chiral symmetry, a crucial point
that was unknown in the 1950s.

Historically, the experimental discovery of heavy mesons [5] in the early 1960s
saved the situation. The one-boson-exchange (OBE) model [6, 7] emerged which is
still the most economical and quantitative phenomenology for describing the nuclear
force [8, 9]. The weak point of this model, however, is the scalar-isoscalar “sigma”
or “epsilon” boson, for which the empirical evidence remains controversial. Since
this boson is associated with the correlated (or resonant) exchange of two pions, a
vast theoretical effort that occupied more than a decade was launched to derive the
2π-exchange contribution to the nuclear force, which creates the intermediate range
attraction. For this, dispersion theory as well as field theory were invoked producing
the Paris [10, 11] and the Bonn [7, 12] potentials.

The nuclear force problem appeared to be solved; however, with the discovery of
quantum chromo-dynamics (QCD), all “meson theories” were relegated to models
and the attempts to derive the nuclear force started all over again.

The problem with a derivation from QCD is that this theory is non-perturbative
in the low-energy regime characteristic of nuclear physics, which makes direct so-
lutions impossible. Therefore, during the first round of new attempts, QCD-inspired
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quark models [13] became popular. These models are able to reproduce quali-
tatively and, in some cases, semi-quantitatively the gross features of the nuclear
force [14, 15]. However, on a critical note, it has been pointed out that these quark-
based approaches are nothing but another set of models and, thus, do not represent
any fundamental progress. Equally well, one may then stay with the simpler and
much more quantitative meson models.

A major breakthrough occurred when the concept of an effective field theory
(EFT) was introduced and applied to low-energy QCD [16].

Note that the QCD Lagrangian for massless up and down quarks is chirally
symmetric, i.e., it is invariant under global flavor SU(2)L × SU(2)R equivalent to
SU(2)V ×SU(2)A (vector and axial vector) transformations. The axial symmetry is
spontaneously broken as evidenced in the absence of parity doublets in the low-mass
hadron spectrum. This implies the existence of three massless Goldstone bosons
which are identified with the three pions (π±, π0). The non-zero, but small, pion
mass is a consequence of the fact that the up and down quark masses are not exactly
zero either (some small, but explicit symmetry breaking). Thus, we arrive at a low-
energy scenario that consists of pions and nucleons interacting via a force governed
by spontaneously broken approximate chiral symmetry.

To create an effective field theory describing this scenario, one has to write down
the most general Lagrangian consistent with the assumed symmetry principles, par-
ticularly the (broken) chiral symmetry of QCD [16]. At low energy, the effective
degrees of freedom are pions and nucleons rather than quarks and gluons; heavy

Table 1. Seven Decades of Struggle: The Theory of Nuclear Forces

1935 Yukawa: Meson Theory

The “Pion Theories”
1950’s One-Pion Exchange: o.k.

Multi-Pion Exchange: disaster

Many pions ≡ multi-pion resonances:
1960’s σ, ρ, ω, ...

The One-Boson-Exchange Model

Refine meson theory:
1970’s Sophisticated 2π exchange models

(Stony Brook, Paris, Bonn)

Nuclear physicists discover
1980’s QCD

Quark Cluster Models

Nuclear physicists discover EFT
1990’s Weinberg, van Kolck

and beyond Back to Meson Theory!
But, with Chiral Symmetry



The Nuclear Force Problem 5

mesons and nucleon resonances are “integrated out”. So, the circle of history is
closing and we are back to Yukawa’s meson theory, except that we have learned to
add one important refinement to the theory: broken chiral symmetry is a crucial con-
straint that generates and controls the dynamics and establishes a clear connection
with the underlying theory, QCD.

It is the purpose of the remainder of this paper to describe the EFT approach to
nuclear forces in more detail.

2 Chiral Perturbation Theory and the Hierarchy of Nuclear
Forces

The chiral effective Lagrangian is given by an infinite series of terms with increasing
number of derivatives and/or nucleon fields, with the dependence of each term on
the pion field prescribed by the rules of broken chiral symmetry. Applying this La-
grangian to NN scattering generates an unlimited number of Feynman diagrams.
However, Weinberg showed [17] that a systematic expansion exists in terms of
(Q/Λχ)ν , where Q denotes a momentum or pion mass, Λχ ≈ 1 GeV is the chi-
ral symmetry breaking scale, and ν ≥ 0 (cf. Figure 1). This has become known as
chiral perturbation theory (χPT). For a given order ν, the number of terms is finite
and calculable; these terms are uniquely defined and the prediction at each order is
model-independent. By going to higher orders, the amplitude can be calculated to
any desired accuracy.

Following the first initiative by Weinberg [17], pioneering work was performed
by Ordóñez, Ray, and van Kolck [18, 19] who constructed a NN potential in co-
ordinate space based upon χPT at next-to-next-to-leading order (NNLO; ν = 3).
The results were encouraging and many researchers became attracted to the new
field. Kaiser, Brockmann, and Weise [20] presented the first model-independent pre-
diction for the NN amplitudes of peripheral partial waves at NNLO. Epelbaum et
al. [21] developed the first momentum-space NN potential at NNLO, and Entem
and Machleidt [22] presented the first potential at N3LO (ν = 4).

In χPT, the NN amplitude is uniquely determined by two classes of contribu-
tions: contact terms and pion-exchange diagrams. There are two contacts of order
Q0 [O(Q0)] represented by the four-nucleon graph with a small-dot vertex shown
in the first row of Figure 1. The corresponding graph in the second row, four nu-
cleon legs and a solid square, represent the seven contact terms of O(Q2). Finally,
at O(Q4), we have 15 contact contributions represented by a four-nucleon graph
with a solid diamond.

Now, turning to the pion contributions: At leading order [LO, O(Q0), ν = 0],
there is only the wellknown static one-pion exchange, second diagram in the first
row of Figure 1. Two-pion exchange (TPE) starts at next-to-leading order (NLO,
ν = 2) and all diagrams of this leading-order two-pion exchange are shown. Fur-
ther TPE contributions occur in any higher order. Of this sub-leading TPE, we
show only two representative diagrams at NNLO and three diagrams at N3LO.
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Figure 1. Hierarchy of nuclear forces in χPT. Solid lines represent nucleons and dashed lines
pions. Further explanations are given in the text.

The TPE at N3LO has been calculated first by Kaiser [23]. All 2π exchange dia-
grams/contributions up to N3LO are summarized in a pedagogical and systematic
fashion in [24] where the model-independent results for NN scattering in peripheral
partial waves are also shown.

Finally, there is also three-pion exchange, which shows up for the first time at
N3LO (two loops; one representative 3π diagram is included in Figure 1). In [25],
it was demonstrated that the 3π contribution at this order is negligible.

One important advantage of χPT is that it makes specific predictions also for
many-body forces. For a given order of χPT, two-nucleon forces (2NF), three-
nucleon forces (3NF), . . . are generated on the same footing (cf. Figure 1). At
LO, there are no 3NF, and at next-to-leading order (NLO), all 3NF terms can-
cel [17,26]. However, at NNLO and higher orders, well-defined, nonvanishing 3NF
occur [26, 27]. Since 3NF show up for the first time at NNLO, they are weak. Four-
nucleon forces (4NF) occur first at N3LO and, therefore, they are even weaker.
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3 Chiral NN Potentials

The two-nucleon system is non-perturbative as evidenced by the presence of shal-
low bound states and large scattering lengths. Weinberg [17] showed that the strong
enhancement of the scattering amplitude arises from purely nucleonic intermediate
states. He therefore suggested to use perturbation theory to calculate the NN po-
tential and to apply this potential in a scattering equation (Lippmann-Schwinger or
Schrödinger equation) to obtain the NN amplitude. We follow this philosophy.

Chiral perturbation theory is a low-momentum expansion. It is valid only for
momenta Q � Λχ ≈ 1 GeV. Therefore, when a potential is constructed, all ex-
pressions (contacts and irreducible pion exchanges) are multiplied with a regulator
function,

exp

[
−

( p
Λ

)2n

−
(
p′

Λ

)2n
]
, (1)

where p and p′ denote, respectively, the magnitudes of the initial and final nucleon
momenta in the center-of-mass frame; and Λ � Λχ. The exponent 2n is to be
chosen such that the regulator generates powers which are beyond the order at which
the calculation is conducted.

NN potentials based upon χPT at NNLO [21,28] are poor in quantitative terms;
they reproduce the NN data below 290 MeV lab. energy with a χ2/datum of more
than 20 (cf. Tables 2 and 3). As shown first by Entem and Machleidt in 2003 [22],
one has to go to order N3LO to obtain a NN potential of acceptable accuracy. For a
more recent construction of an N3LO NN potential, see [31].

For an accurate fit of the low-energy pp and np data, charge-dependence is
important. Charge-dependence up to next-to-leading order of the isospin-violation
scheme (NLØ, in the notation of [32]) includes: the pion mass difference in OPE
and the Coulomb potential in pp scattering, which takes care of the LØ contribu-
tions. At order NLØ we have pion mass difference in the NLO part of TPE, πγ
exchange [33], and two charge-dependent contact interactions of order Q0 which
make possible an accurate fit of the three different 1S0 scattering lengths, app, ann,
and anp.

Table 2. χ2/datum for the reproduction of the 1999 np database below 290 MeV by various
np potentials. (Λ = 500 MeV in all chiral potentials.)

Bin (MeV) # of data N3LOa NNLOb NLOb AV18c

0–100 1058 1.06 1.71 5.20 0.95
100–190 501 1.08 12.9 49.3 1.10
190–290 843 1.15 19.2 68.3 1.11

0–290 2402 1.10 10.1 36.2 1.04

aReference [22].
bReference [28].
cReference [29].
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In the optimization procedure, we fit first phase shifts, and then we refine the
fit by minimizing the χ2 obtained from a direct comparison with the data. The
χ2/datum for the fit of the np data below 290 MeV is shown in Table 2, and the
corresponding one for pp is given in Table 3. The χ2 tables show the quantitative
improvement of the NN interaction order by order in a dramatic way. Even though
there is considerable improvement when going from NLO to NNLO, it is clearly
seen that N3LO is needed to achieve an accuracy comparable to the phenomenolog-
ical high-precision Argonne V18 potential [29]. Note that proton-proton data have,
in general, smaller errors than np data which explains why the pp χ2 are always
larger.

The phase shifts for np scattering below 300 MeV lab. energy are displayed in
Figure 2. What the χ2 tables revealed, can be seen graphically in this figure. The
3P2 phase shifts are a particularly good example: NLO (dotted line) is clearly poor.
NNLO (dash-dotted line) brings improvement and describes the data up to about
100 MeV. The difference between the NLO and NNLO curves is representative for
the uncertainty at NLO and, similarly, the difference between NNLO and N3LO
reflects the uncertainty at NNLO. Obviously, at N3LO (Λ = 500 MeV, thick solid
line) we have a good description up to 300 MeV. An idea of the uncertainty at N3LO
can be obtained by varying the cutoff parameter Λ. The thick dashed line is N3LO
using Λ = 600 MeV. In most cases, the latter two curves are not distinguishable on
the scale of the figures. Noticeable differences occur only in 1D2, 3F2, and ε2 above
200 MeV.

4 Chiral Three-Nucleon Forces

As noted before, an important advantage of the EFT approach is that it creates two-
and many-body forces on an equal footing. The first non-vanishing 3NF terms occur
at NNLO and are shown in Figure 1 (row ‘Q3/NNLO’, column ‘3N Force’). There
are three diagrams: the TPE, OPE, and 3N-contact interactions [27]. The TPE 3N-
potential is given by

Table 3. χ2/datum for the reproduction of the 1999 pp database below 290 MeV by various
pp potentials. (Λ = 500 MeV in all chiral potentials.)

Bin (MeV) # of data N3LOa NNLOb NLOb AV18c

0–100 795 1.05 6.66 57.8 0.96
100–190 411 1.50 28.3 62.0 1.31
190–290 851 1.93 66.8 111.6 1.82

0–290 2057 1.50 35.4 80.1 1.38

aReference [22].
bSee footnote [30].
cReference [29].
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Figure 2. np phase parameters below 300 MeV lab. energy for partial waves with J ≤ 2.
The thick solid (dashed) line is the result by Entem and Machleidt [22] at N3LO using Λ =
500 MeV (Λ = 600 MeV). The thin dotted and dash-dotted lines are the phase shifts at NLO
and NNLO, respectively, as obtained by Epelbaum et al. [28] using Λ = 500 MeV. The solid
dots show the Nijmegen multienergy np phase shift analysis [34], and the open circles are
the GWU/VPI single-energy np analysis SM99 [35].

V 3NF
TPE =

(
gA
2fπ

)2 1
2

∑
i�=j �=k

(�σi · �qi)(�σj · �qj)
(q2i +m2

π)(q2j +m2
π)

Fαβijk τ
α
i τ

β
j (2)

with �qi ≡ �pi
′ − �pi, where �pi and �pi

′ are the initial and final momenta of nucleon i,
respectively, and

Fαβijk = δαβ
[
−4c1m2

π

f2
π

+
2c3
f2
π

�qi · �qj
]

+
c4
f2
π

∑
γ

εαβγ τγk �σk · [�qi × �qj ] . (3)

The vertex involved in this 3NF term is the two-derivativeππNN vertex (large solid
dot in Figure 1) which we encountered already in the TPE contribution to the 2N
potential at NNLO. Thus, there are no new parameters and the contribution is fixed
by the LECs used in NN. The OPE contribution is

V 3NF
OPE = D

gA
8f2
π

∑
i�=j �=k

�σj · �qj
q2j +m2

π

(τ i · τ j)(�σi · �qj) (4)

and, finally, the 3N contact term reads

V 3NF
ct = E

1
2

∑
j �=k

τ j · τ k . (5)
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The last two 3NF terms involve two new vertices (that do not occur in the 2N prob-
lem), namely, the πNNNN vertex with parameter D and a 6N vertex with param-
eters E. One way to pin down the two new parameters is to fit them to the triton
and the 4He binding energies. Once D and E are fixed, the results for other 3N,
4N, . . . observables are predictions. Results for 3N scattering observables are re-
ported in [36, 37]. Spectra of light nuclei are calculated in [38, 39]. Concerning the
famous ‘Ay puzzle’, the above 3NF terms yield some improvement of the predicted
nucleon-deuteron analyzing powers, however, the problem is not resolved.

One should note that there are additional 3NF terms at NNLO due to relativistic
corrections (1/MN corrections) that have not yet been included in any calculation.
However, there are all reasons to believe that these contributions will be very small,
probably negligible. It is more likely that the problem with the chiral 3NF is analo-
gous to the one with the chiral 2NF: namely, NNLO is insufficient and for sufficient
accuracy one has to proceed to N3LO. Two 3NF topologies at N3LO are indicated
in Figure 1. The N3LO 3NF, which does not depend on any new parameters, is
presently under development.

5 Conclusions

The EFT approach to nuclear forces is a modern refinement of Yukawa’s meson
theory. It represents a scheme that has an intimate relationship with QCD and al-
lows to calculate nuclear forces to any desired accuracy. Moreover, nuclear two-
and many-body forces are generated on the same footing.

At N3LO [22], the accuracy is achieved that is necessary and sufficient for mi-
croscopic nuclear structure. First calculations applying the N3LO NN potential in
the no-core shell model [40–42], the coupled cluster formalism [43–48], and the
unitary-model-operator approach [49] have produced promising results.

The 3NF at NNLO is known [27] and has had first successful applications in
few-nucleon reactions [36, 37] as well as the structure of light nuclei [38, 39]. The
3NF at N3LO is under construction.

It may be too early to claim that the nerver-ending story is coming to an end, but
the story is certainly converging.
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41. C. Forssen, P. Navrátil, W.E. Ormand, and E. Caurier, Phys. Rev. C 71, 044312 (2005).
42. J.P. Vary et al., Eur. Phys. J. A 25 s01, 475 (2005).
43. K. Kowalski, D.J. Dean, M. Hjorth-Jensen, and T. Papenbrock, Phys. Rev. Lett. 92,

132501 (2004).



12 R. Machleidt

44. D.J. Dean and M. Hjorth-Jensen, Phys. Rev. C 69, 054320 (2004).
45. M. Wloch et al., J. Phys. G 31, S1291 (2005).
46. M. Wloch et al., Phys. Rev. Lett. 94, 21250 (2005).
47. D.J. Dean et al., Nucl. Phys. 752, 299 (2005).
48. J.R. Gour et al., Phys. Rev. C 74, 024310 (2006).
49. S. Fujii, R. Okamato, and K. Suzuki, Phys. Rev. C 69, 034328 (2004).




