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Abstract. A collective model describing coherent quadrupole-octupole oscillations and ro-
tations with a Coriolis coupling between the even-even core and the unpaired nucleon is
applied to odd nuclei. The particle-core coupling provides a split parity-doublet structure of
the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide
range of odd-A nuclei. It provides model estimations for the angular momentum projection
K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

1 Introduction

The simultaneous manifestation of quadrupole and octupole degrees of freedom in
atomic nuclei is associated with typical spectroscopic characteristics of nuclear col-
lective motion [1]. In general the spectrum contains positive and negative parity
levels, some of them being related with enhanced electric E1 and E3 transitions [2].
In even–even nuclei the even and odd angular momentum levels appear with pos-
itive and negative parities, respectively, due to the shape reflection asymmetry. In
odd nuclei the structure of the spectrum is determined by the coupling between the
reflection asymmetric even-even core and the motion of the unpaired particle. The
combination of the core intrinsic parity with that of the particle to a “total intrinsic
parity” provides a split parity doublet structure of the spectrum. The mutual dispo-
sition of the doublet counterparts up or down depends on the parity of the ground
state as well as on the possible change in the intrinsic parity at some higher angular
momenta. As in some cases, especially in heavy odd nuclei, the angular momentum
of the ground state and/or its projection K are not unambiguously determined, the
complicated structure of the spectrum represents a challenging subject for a study
from both experimental and theoretical points of view. That is why various theoreti-
cal models, developed initially to explain the properties of quadrupole–octupole de-
formations in even-even nuclei, have been extended to describe the respective prop-
erties in odd nuclei [2, 3]. Recently a collective model for the quadrupole–octupole
vibration–rotation motion in even-even nuclei has been proposed [4]. It was able to
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reproduce some basic characteristics as energy levels, parity shift and electric transi-
tion properties in nuclei with collective bands built on coupled quadrupole-octupole
vibrations.

The purpose of the present work is to extend our model approach [4] to the
case of odd nuclei and to apply it to collective spectra in the region of heavy odd
nuclei. For this reason we consider the Coriolis coupling of the “soft” quadrupole–
octupole oscillating core to the motion of the unpaired nucleon. The model scheme
is developed respectively to take into account the total intrinsic parity of the system
and to incorporate consequently the split parity doublet structure of the spectrum.

2 Quadrupole–Octupole Hamiltonian with Coriolis Interaction

We consider that the even–even core of an odd nucleus is allowed to oscillate with
respect to the quadrupole β2 and octupole β3 axial deformation variables mixed
through a centrifugal (rotation-vibration) interaction. The unpaired nucleon con-
tributes to the collective motion of the total system through the Coriolis interaction.
The collective Hamiltonian of the odd nucleus can then be taken in the form

Hqo = − �
2

2B2

∂2

∂β2
2

− �
2

2B3

∂2

∂β2
3

+ U(β2, β3, I) + hcoriol, (1)

where

U(β2, β3, I) =
1
2
C2β2

2 +
1
2
C3β3

2 +
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is the potential of quadrupole and octupole oscillations coupled through the collec-
tive angular momentum Î and its third projection Îz . B2 and B3 are the effective
quadrupole and octupole mass parameters and C2 and C3 are the stiffness parame-
ters for the respective oscillation modes. The last term in (1) represents the Coriolis
interaction

hcoriol = − (Î+ĵ− + Î−ĵ+)
2(d2β2

2 + d3β2
3)
, (3)

where Î± = Îx ± iÎy and ĵ± = ĵx ± iĵy are the spherical components of the total
nuclear and the intrinsic (unpaired) particle angular momenta, respectively. After
taking into account the action of the total angular momentum operators and the
Coriolis term in the “particle+rotor” space , Eq. (3) can be superposed to the third
term in Eq. (2). Then the terms U(β2, β3, I) and hcoriol in Eq. (1) can be replaced by
the potential
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The decoupling parameter a is defined between the unpaired particle states a =
〈χK |ĵ+|χ−K〉 (with K = 1/2). The sign of its contribution in the potential energy
depends on the total intrinsic parity π = ± of the system (see below). The parameter
d0 characterizes the shape of the potential in the ground state.

The properties of the even core potential (2) have been studied in detail
in [4]. The respective eigenvalue problem is solved by using polar variables β2 =√
d/d2 η cosφ, β3 =

√
d/d3 η sinφ, with d = (d2 + d3)/2. By assuming a co-

herent interplay between the quadrupole and octupole modes the following corre-
lation between the stiffness, inertia and mass parameters are imposed d2/(dC2) =
d3/dC3 = 1/C, d2/dB2 = d3/dB3 = 1/B. As a result the potential reads

UI,K,πa(η) =
1
2
Cη2 +

X(I,K, πa)
dη2

, (6)

and the model Hamiltonian obtains a simple form in the polar variables
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After separating the variables in the Schrödinger equation one has
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where k is the separation quantum number. Eq. (8) is solved analytically for the
potential (6) providing the energy spectrum

En,k(I,K, πa) = �ω
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where ω =
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C/B, n = 0, 1, 2, ... and b =
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. The respective eigenfunctions

ψ(η) are obtained in terms of the Laguerre polynomials, and their explicit form
is given in [4]. Eq. (9) in the variable φ is solved under the boundary condition
ϕ(−π/2) = ϕ(π/2) = 0, which provides two different solutions with positive,
πϕ = (+), and negative πϕ = (−) parity, respectively

ϕ+(φ) =
√

2/π cos(kφ) , k = 1, 3, 5, ... ; (11)

ϕ−(φ) =
√

2/π sin(kφ) , k = 2, 4, 6, ... . (12)

If the lowest energy of the motion in the variable φ is considered, one has k = k+ =
1 for ϕ+ and k = k− = 2 for ϕ−. The total wave function has the form

Ψ ∼ ψ(η)ϕ±(φ)

√
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The total intrinsic parity is determined as

π = πϕ · πχ, (14)

where πϕ is the parity of the even-core oscillation function ϕ±(φ) and πχ is the
parity of the unpaired particle function χK .

3 Description of Parity-Doublet Spectra

In the strong coupling limit between the core and the unpaired nucleon the spectrum
has a parity doublet structure I(π=±) = I±0 , (I0 + 1)±, (I0 + 2)±, (I0 + 3)±, ... ,
where I0 is the spin of the ground state. The parity of the wave function ϕ±(φ) is
determined by (14) as πϕ = π · πχ. As a result the parity doublets are split with
respect to the quantum number k in Eq. (10). The possible ways of splitting are
shown in the table below.

πχ Iπ πϕ k shift

(+)
I+ (+) 1 down
I− (−) 2 up

(−)
I+ (−) 2 up
I− (+) 1 down

It is seen that the direction in which the positive and negative parity counterparts
of the doublet are shifted to each other depends on the parity of the unpaired nucleon
state. For the lowest energy part of the spectrum we may consider that the parity of
the unpaired nucleon coincides with that of the ground state. Thus when the ground
state parity is positive, the negative counterparts of the doublet are shifted up with
respect to the positive ones, while for a negative-parity ground state the opposite
situation is realized. At some higher angular momentum the intrinsic nucleon parity
can be changed due to an alignment process in the core [5]. Then the unpaired
nucleon parity πχ changes in sign. The parity πϕ of the core oscillation function
also changes due to the relation (14). As a result the sign of the parity splitting of
the states with I± is changed according to the scheme in the above table. This effect
can be easily identified in the structure of the experimental spectra. In the present
model the change in the intrinsic nucleon parity at given angular momentum is taken
into account phenomenologically by switching the rule for the quantum number k
between the first (πχ = +) and the second (πχ = −) rows in the above table. This
change can be taken into account microscopically through the deformed shell model
consideration of the intrinsic single particle structure [5].

The above split parity doublet structure is observed in a wide range of heavy
odd nuclei for which the present model scheme can take a place. We have applied
the model to the parity-doublet spectra of the nuclei 151Nd, 151,153Pm, 153,155Sm,
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Figure 1. Experimental and theoretical parity doublet splitting in 219,221Fr, 219,225Ra, 219Ac
and 225Th.

157,159Gd, 159−165Dy, 219−225Fr, 219−227Ra, 219,223−227Ac, 223,225,229,231Th,
233−237U, 237−243Pu, 239−245Am, 245,247Cm and 247,249Bk. The theoretical energy
levels are obtained by taking Ẽ0,k(I) = E0,k(I) − E0,k(I0) from Eq. (10), with
I0 being the ground-state angular momentum. The model parameters ω, b, d0 and
the decoupling parameters a (for the cases of K = 1/2) have been adjusted with
respect to the experimental data. The third angular momentum projection K was
taken as suggested in the experimental references, while for nuclei without avail-
able suggestions we have assumed K = I0. In all considered nuclei the calculations
successfully reproduce the energy levels with both positive and negative parities. As
an example, in Tables 1–3 the theoretical and the experimental levels of the nuclei
219−225Fr, 219−227Ra, 219−227Ac, 223,225Th, 237U and 239Pu are compared. We see
in Table 1 that the level structures in 219Fr (with I0 = (9/2)− and K = 1/2) and
221Fr (with I0 = (5/2)− and K = 1/2), which are strongly perturbed by the Cori-
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Figure 2. The same as Figure 1, but for the nuclei 225Fr, 225Ac, 231Th, 239,243Am and 245Cm.

olis interaction, are reproduced quite accurately. In Tables 2 and 3 the quality of the
model description in 219−227Ac and in the longer level sequences in 223,225Th, 237U
and 239Pu is illustrated. In the cases of gaps in the sequences of experimental data
the calculations provide respective model predictions.

The obtained numerical results allow an analysis of the parity doublet splitting,
given by the quantity ΔE(I±) = E(I+) − E(I−), as a function of the angular
momentum. In Figure 1 it is illustrated that the model calculations reproduce the
staggering behavior of ΔE(I±) induced by the Coriolis interaction in the spectra
of 219,221Fr, 219,225Ra, 219Ac and 225Th with K = 1/2. In Figure 2 we observe a
smooth decrease of ΔE(I±) as a function of I for the nuclei 225Fr, 225Ac, 231Th,
239,243Am and 245Cm where K �= 1/2. In Figure 3 it is illustrated that the applied
formalism provides a model estimation for the possible values of the quantum num-
berK in 223Ra. It is seen that the initially assumed valueK = 3/2, Figure 3(a), does
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Figure 3. Experimental and theoretical doublet-splitting in 223Ra with (a) K = 3/2 and (b)
K = 1/2.

Table 1. Theoretical and experimental energy levels (in keV) of the positive and negative
parity bands in 219−225Fr and 219−227Ra. The respective parameter values (in MeV), and the
root mean square (RMS) deviations (in keV) are given in the first column. Data from [6].

Nucl/K π = (+) π = (−) Nucl/K π = (+) π = (−)
params I th exp th exp params I th exp th exp
219Fr 1/2 310.6 55.9 81.0 223Fr 3/2 139.4 134.5 0 0
K = 1/2 3/2 229.6 210.4 153.1 139.8 K = 3/2 5/2 171.2 172.0 32.8 12.9
ω = 2.123 5/2 390.7 384.3 17.4 15.0 ω = 0.623 7/2 215.3 219.5 78.4 82.1
b = 0.081 7/2 201.8 191.3 244.1 269.2 b = 0.279 9/2 271.3 136.2
d0 = 6514 9/2 491.5 506.5 0 0 d0 = 303 11/2 338.8 205.8
a = −11.28 11/2 195.0 216.0 355.8 333.5 RMS=8.7 13/2 417.2 286.6
RMS=16.9 13/2 419.4 199.5

221Fr 1/2 160.4 145.8 8.9 26.0 225Fr 3/2 133.2 142.6 0 0
K = 1/2 3/2 114.4 99.9 104.1 99.6 K = 3/2 5/2 153.2 151.6 35.0 28.5
ω = 0.138 5/2 223.1 234.5 0 0 ω = 0.139 7/2 179.2 198.2 75.0 82.5
b = 0.29 7/2 126.7 150.0 191.5 195.8 b = 0.244 9/2 210.0 181.6 117.9 128.1
d0 = 11.2 9/2 300.5 294.8 44.5 38.5 d0 = 0 11/2 244.3 162.5
a = −4.62 11/2 170.9 286.0 RMS=13.5 13/2 281.4 208.1
RMS=12.3 13/2 386.8 119.9

219Ra 7/2 0 0 228.5
K = 1/2 9/2 259.8 124.7 223Ra 3/2 0 0 54.5 50.1
ω = 0.515 11/2 133.4 434.5 K = 3/2 5/2 29.4 29.9 83.7 79.7
b = 0.785 13/2 497.5 475.2 289.1 ω = 0.510 7/2 70.4 61.4 124.4 123.8
d0 = 326 15/2 331.1 251.1 697.6 604.1 b = 0.647 9/2 122.7 130.1 176.3 174.6
a = −2.3 17/2 789.2 853.5 514.5 512.4 d0 = 599 11/2 186.2 174.6 239.3 247.4
RMS=37.1 19/2 587.1 546.0 1011.0 937.7 RMS=5.9 13/2 260.5 313.1 316.0

21/2 1184.5 1245.9 735.0 751.3
23/2 953.2 893.2 1313.4 1325.0 225Ra
25/2 1561.5 1638.2 1066.2 1053.3 1/2 0 0 51.1 55.2
27/2 1303.4 1288.3 1711.3 1738.2 K = 1/2 3/2 45.9 42.8 38.0 31.6
29/2 1973.3 2038.8 1439.4 1411.3 ω = 0.124 5/2 23.8 25.4 109.5 120.4
31/2 1692.3 1701.6 2141.4 2152.9 b = 1.029 7/2 123.8 111.6 80.9 69.4
33/2 2414.9 2460.2 1848.4 1833.2 d0 = 62 9/2 87.5 100.5 199.4 203.5
35/2 2114.4 2130.3 2598.8 2568.1 a = 1.83 11/2 229.4 226.9 158.7
37/2 2881.8 2287.9 2289.7 RMS=7.8 13/2 182.7 312.6
39/2 2564.8 2580.5 3079.3 3003.6
41/2 3370.2 2753.3 2767.9 227Ra
43/2 3039. 3045.7 3579.5 3/2 0 0 87.5 90
45/2 3876.7 3240.5 3272.7 K = 3/2 5/2 29.1 25.8 104.7 101.9
47/2 3533.6 3522.6 4096.3 ω = 0.093 7/2 61.4 64.1 126.6
49/2 4398.9 3746.4 3793.4 b = 0.32 9/2 95.4 152.0
51/2 4045.6 4627.3 d0 = 0. 11/2 130.3 180.0
53/2 4934.3 4268.2 4345.8 RMS=19.8 13/2 165.7 186 209.862 139
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Table 2. The same as in Table 1 but for the nuclei 219−227Ac, 223Th [6] and 225Th (data
from [7]).

Nucl/K π = (+) π = (−) Nucl/K π = (+) π = (−)
params I th exp th exp params I th exp th exp
219Ac, 9/2 188.0 0. 0. 225Ac, 3/2 38.1 40.1 0. 0.
K = 1/2, 11/2 259.2 263.7 341.0 K = 3/2 5/2 67.3 64.7 33.5 29.9
ω = 0.3 13/2 521.9 576.8 343.6 355.2 ω = 0.079 7/2 103.9 105.1 74.2 77.1
b = 0.950 15/2 601.0 629.9 657.6 b = 1.045 9/2 145.8 145.0 119.6
d0 = 12 17/2 883.9 866.6 714.4 714.6 d0 = 12.54 11/2 191.3 168.2
a = −0.56 19/2 967.4 965.3 1012.6 1017.7 RMS=2.2 13/2 239.4 218.8
RMS=38.2 21/2 1207.7 1183.0 1156.4 1116.0

23/2 1295.6 1301.0 1455.0 1413.7 227Ac, 3/2 25.0 27.4 0.000 0.
25/2 1602.9 1547.0 1542.0 1551.7 K = 3/2, 5/2 52.1 46.4 27.398 30.0
27/2 1692.1 1698.8 1846.3 1813.0 ω = 0.191 7/2 89.4 84.5 65.195 74.1
29/2 2002.8 1959.3 1934.7 2023.8 b = 1.318 9/2 112.9 109.9 136.622 126.9
31/2 2092.8 2149.3 2242.9 2245.2 d0 = 195 11/2 169.8 187.3 193.021 198.7

RMS=10.7 13/2 235.4 210.8 257.995 271.3
223Ac, 5/2 72.2 64.6 0. 0.
K = 5/2 7/2 110.5 110.1 38.8 42.4
ω = 0.522 9/2 159.4 167.5 88.3 90.7
b = 0.459 11/2 218.5 148.1 141.0
d0 = 499 13/2 287.7 218.1
RMS=5.3

223Th 225Th 3/2 0 0 13.4
K = 5/2, 5/2 0 0 36.5 K = 1/2 5/2 41.8 31 39.7
ω = 0.446 7/2 53.8 51.3 90.1 ω = 0.276 7/2 78.7 68 98.1
b = 1.265 9/2 122.5 118.9 158.5 180.5 b = 5.7 9/2 153.5 135 145.3
d0 = 525. 11/2 205.7 212.3 241.3 243.0 d0 = 1159. 11/2 211.0 187 236.3 254
RMS=14.1 13/2 303.0 320.0 338.2 324.1 a = −0.226 13/2 318.0 303 303.9 326

15/2 448.6 428.7 413.8 412.4 RMS=13.2 15/2 395.6 370 426.6 433
17/2 572.0 569.6 537.7 547.3 17/2 533.8 530 513.9 520
19/2 707.9 706.0 674.2 657.0 19/2 630.7 615 667.3 668
21/2 855.8 858.1 822.6 838.1 21/2 799.0 807 773.5 769
23/2 1015.0 1021.6 982.4 962.1 23/2 914.3 911 956.1 957
25/2 1185.0 1185.4 1152.9 1179.4 25/2 1111.1 1127 1080.3 1072
27/2 1365.1 1370.6 1333.7 1313.8 27/2 1243.9 1250 1290.6 1291
29/2 1554.9 1551.7 1524.1 1558.4 29/2 1467.6 1485 1431.8 1426
31/2 1753.7 1757.0 1723.6 1702.5 31/2 1617.0 1631 1668.3 1658
33/2 1961.1 1953.0 1931.6 33/2 1866.0 1870 1825.4 1824

35/2 2030.7 2047 2086.3 2057

not support the staggering behavior of the parity splitting observed in experimen-
tal data. Figure 3(b) illustrates that if a K = 1/2 value is assumed the staggering
behavior of ΔE(I±) is reproduced. In such a way the presence of the staggering
effect indicates a strong contribution of an intrinsic K = 1/2 configuration in the
Coriolis coupling interaction.

4 Conclusion

In conclusion, the model scheme based on two-dimensional coherent quadrupole-
octupole oscillations with a Coriolis coupling to a single particle suggests a col-
lective mechanism for the appearance of split parity-doublet structures in odd-A
nuclei. The model reproduces split parity-doublet spectra in a wide range of nuclei
with a good accuracy and provides predictions for further not yet observed energy
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Table 3. The same as in Table 1 but for the nuclei 237U and 239Pu (data from [6]).

Nucl/K π = (+) π = (−) Nucl/K π = (+) π = (−)
params I th exp th exp params I th exp th exp
237U 1/2 0 0 375.2 239Pu 1/2 0 0 349.2 469.8
K = 1/2, 3/2 20.3 11.4 393.2 K = 1/2 3/2 12.6 7.9 374.0 492.1
ω = 1.46 5/2 51.5 56.3 425.4 ω = 1.58 5/2 55.3 57.3 394.2 505.6
b = 0.102 7/2 98.4 82.9 467.1 b = 0.107 7/2 84.4 75.7 451.9 556.0
d0 = 618 9/2 154.0 162.3 524.6 d0 = 791 9/2 160.7 163.8 488.0 583.0
a = 0.038 11/2 226.8 204.0 589.2 a = −0.3 11/2 206.0 193.5 577.7 661.2
RMS=30 13/2 305.8 317.3 671.0 RMS=63 13/2 314.8 318.5 629.1 698.7

15/2 403.1 375.1 757.7 846.4 15/2 375.6 359.2 749.8 806.4
17/2 504.2 518.2 862.4 930.0 17/2 515.4 519.5 816.0 857.5
19/2 624.6 592.0 969.8 1027.5 19/2 590.9 570.9 966.0 992.5
21/2 746.2 762.8 1096.1 1131.0 21/2 760.0 764.7 1046.2 1058.1
23/2 888.0 853.0 1222.8 1250.7 23/2 849.4 828.0 1224.0 1219.4
25/2 1028.5 1048.7 1369.1 1376.1 25/2 1045.9 1053.1 1317.3 1300.9
27/2 1189.7 1155.1 1513.4 1515.7 27/2 1148.1 1127.8 1521.0 1487.4
29/2 1347.5 1372.2 1678.0 1662.3 29/2 1369.9 1381.5 1626.4 1584.9
31/2 1526.3 1494.1 1838.5 1821.8 31/2 1484.0 1467.8 1854.1 1795.4
33/2 1699.7 1729.2 2019.8 1987.7 33/2 1729.1 1748.5 1970.7 1908.9
35/2 1894.4 1868.2 2194.9 2166.5 35/2 1854.0 1847.0 2220.4 2143.4
37/2 2081.7 2117.2 2391.2 2349.7 37/2 2120.3 2152.2 2347.4 2272.0
39/2 2290.6 2272.2 2579.5 2547.5 39/2 2255.2 2263.0 2617.2 2529.4
41/2 2490.5 2530.1 2789.3 2746.7 41/2 2540.7 2590.1 2753.6 2672.0
43/2 2712.1 2702.5 2989.4 2960.5 43/2 2684.6 2714.0 3041.8 2951.4
45/2 2922.9 2963.8 3211.2 3174.7 45/2 2987.6 3060.1 3186.7 3108.0
47/2 3155.8 3154.5 3422.0 3401.5 47/2 3139.5 3198.0 3491.6 3407.0
49/2 3376.5 3415.8 3654.6 3630.0 49/2 3458.3 3559.1 3644.2 3578.0
51/2 3619.5 3625.5 3874.9 3865.0 51/2 3617.5 3713.0 3964.2 3895.0
53/2 3848.9 3886.8 4117.1 4105.0 53/2 3950.5 4087.1 4123.8 4080.0
55/2 4100.7 4115.0 4345.8 4344.0 55/2 4116.2 4256.0 4457.4 4413.0
57/2 4338.0 4377.0 4596.7 4597.0
59/2 4597.7 4832.9 4835.0

levels. It describes the fine staggering behavior of the doublet-splitting as a func-
tion of the angular momentum and provides respective estimations for the intrinsic
K-configurations associated with the collective energy bands of odd-A nuclei.
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