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Abstract. It is well known that the Pauli principle plays a substantial role at low energies be-
cause the phonon operators are not ideal boson operators. Calculating the exact commutators
between the quasiparticle and phonon operators one can take into account the Pauli principle
corrections. Besides the ground state correlations due to the quasiparticle interaction in the
ground state influence the single particle fragmentation as well. In this paper, we general-
ize the basic QPM equations to account for both mentioned effects. As an illustration of our
approach, calculations on the structure of the low-lying states in 131Ba have been performed.

1 Introduction

In the forthcoming period there will be an increasing activity in the domain of un-
stable nuclei studies due to the start of operation at several major facilities. A theo-
retical investigation of odd nuclei far from stability demands to include the ground
state correlation effects.

The quasiparticle-phonon nuclear model (QPM) [1] is widely used for the de-
scription of the energies and fragmentation of nuclear excitations. The different ver-
sions of the QPM equations for odd spherical nuclei are given in [2–4]. It has been
shown [2, 5] that the Pauli principle plays a substantial role at low energies, but the
ground state correlation effects were not taken into account in these calculations.
From the other side, the ground state correlations influence the single particle frag-
mentation [6] as they shift the strength to higher excitation energies.

In this paper, we generalize the basic QPM equations to account for both men-
tioned effects. We treat long-range ground state correlations by including backward-
going quasiparticle-phonon vertices using the equation of motion method [7] with
explicitly accounting for the Pauli principle. As an illustration of our approach, cal-
culations of the structure of the low-lying states in 131Ba have been performed.

2 Basic Formulae

We employ the QPM-Hamiltonian including an average nuclear field described
by the Woods-Saxon potential, pairing interactions, isoscalar particle-hole residual
forces in separable form with the Bohr-Mottelson radial dependence [8]:
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H =
(n,p)∑
τ

{∑
jm

(Ej − λτ )a
†
jmajm − 1

4
G(0)
τ : (P †

0P0)τ :

− 1
2

∑
λμ

κ(λ) : (M †
λμMλμ) :

}
. (1)

The single-particle states are specified by the quantum numbers (jm);Ej are the

single-particle energies; λτ is the chemical potential;G(0)
τ and κ(λ) are the strengths

in the p-p and in the p-h channel, respectively. The sum goes over protons(p) and
neutrons(n) independently and the notation τ = {n, p} is used.The pair creation and
the multipole operators entering the normal products in (1) are defined as follows:

P+
0 =

∑
jm

(−1)j−ma+
jma

+
j−m,

M+
λμ =

1√
2λ+ 1

∑
jj′mm′

f
(λ)

jj′
〈jmj′

m
′ | λμ〉a+

jmaj′m′ ,

where f (λ)
jj′ are the single particle radial matrix elements of the residual forces.

In what follows we work in quasiparticle representation, defined by the canoni-
cal Bogoliubov transformation:

a+
jm = ujα

+
jm + (−1)j−m vjαj−m.

The Hamiltonian can be represented in terms of bifermion quasiparticle opera-
tors (and their conjugate ones):

B(jj
′
;λμ) =

∑
mm′

(−1)j
′
+m′

〈jmj
′
m

′
| λμ〉α+

jmαj′−m′ ,

A+(jj
′
;λμ) =

∑
mm′

〈jmj
′
m

′
| λμ〉α+

jmα
+
j′m′ .

The phonon creation operators are defined in the two-quasiparticle space in a
standard fashion:

Q+
λμi =

1
2

∑
jj′
{ψλi

jj′ A
+(jj

′
;λμ)− (−1)λ−μϕλi

jj′ A(jj
′
;λ− μ)},

where the index λ = 0, 1, 2, 3, ... denotes multipolarity and μ is its z-projection in
the laboratory system.The normalization of the one-phonon states reads:

〈|[Qλμi, Q+
λ′μ′i′ ]|〉 = δλλ′δμμ′δii′ .

In terms of quasiparticles and phonons the Hamiltonian is rewritten
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H = h0 + hpp + hQQ + hQB,

h0 + hpp =
∑
jm

εj α
+
jm αjm,

hQQ = −1
8

∑
λμii′

A (λii′) (Q+
λμi + (−)λ−μQλ−μi) (Q+

λ−μi′ + (−)λ+μQλμi′ ),

hQB = − 1
2
√

2

∑
λμijj′

πj
πλ

Γ (jj′λi) ( (−)λ−μQ+
λμi + Qλ−μi)B(jj

′
;λ−μ) + h.c.,

where

A (λii′) =
Xλi + Xλi

′√
Y λiY λi

′ ,

Γ (jj′λi) =
πλ
πj

v
(−)
jj′ f

(λ)
jj′√

Y λi
,

Xλi =
∑
jj′

(f (λ)

jj′ u
(+)

jj′ )2 εjj′

ε2
jj′

− ω2
λi

,

Y λi =
∑
jj′

(f (λ)

jj′
u

(+)

jj′
)2 εjj′ ωλi(

ε2
jj′ − ω2

λi

)2 ,

with v(−)
jj′ = ujuj′ − vjvj′ and u(+)

jj′ = uj′vj + ujvj′ . Here and further we use the

notation πj =
√

(2j + 1).
The model wave function of an odd spherical nucleus is taken in the form [6]:

Ψν(JM) = O+
JMν |〉, (2)

where

O+
JMν = CJνα

+
JM+

∑
i

Dλi
j (Jν)P+

jλi(JM)−EJν α̃JM−
∑
i

Fλij (Jν)P̃jλi(JM),

(3)
with

P+
jλi(JM) =

[
α+
jmQ

+
λμi

]
JM
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and ˜ stands for time conjugate according to the convention: P̃jλi(JM) =
(−1)J−MPjλi(J −M).

We apply the equation of motion method to the excitation operator (3):

〈|{δOJMν , H,O
+
JMν}|〉 = ηJν〈|{δOJM , O+

JM}|〉.

Following the linearization procedure [7], at the final state of calculation of the
matrix elements, we consider the ground state to be a vacuum state for both opera-
tors αJM and Qλμi.

In all calculations the exact commutation relations between the quasiparticle and
phonon operators are considered:[

αjm, Q
+
JMν

]
=

∑
j′m′

〈jmj′m′ | JM〉ψJνjj′α+
j′m′ .

The normalization condition of the wave function reads

〈|{OJMν , O
+
JMν}|〉 = C2

Jν + E2
Jν +

∑
jλi

[Dλi
j (Jν)]2 +

∑
jλi

[Fλij (Jν)]2+

+
∑

jλij′λ′i′
[Dλi

j (Jν)Dλ′i′
j′ (Jν) + Fλij (Jν)Fλ

′i′
j′ (Jν)]LJ (jλi|j′λ′i′) = 1.

The equation of motion leads to the following system of linear equations for
each state with quantum numbers JM :

⎛⎜⎜⎝
εJ V (Jj′λ′i′) G (J) −W (Jj′λ′i′)

V (Jjλi) KJ(jλi|j′λi′) −W (Jjλi) SJ (jλi|j′λ′i′)
G (J) −W (Jj′λ′i′) −εJ −V (Jj′λ′i′)

−W (Jjλi) SJ (j′λ′i′|jλi) −V (Jjλi) −KJ(jλi|j′λi′)

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
CJν

Dλ′i′
j′ (Jν)

−EJν
−Fλ′i′

j′ (Jν)

⎞⎟⎟⎟⎟⎠ =

= ηJν

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

CJν

Dλi
j (Jν) +

∑
j′λ′i′

Dλ′i′
j′ (Jν)LJ (jλi|j′λ′i′)

−EJν
−Fλij (Jν) −

∑
j′λ′i′

Fλ
′i′

j′ (Jν)LJ (jλi|j′λ′i′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

The average value of H over the wave functions (2) is
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< Ψ∗
ν (JM)HΨν(JM) >= [C2

Jν − E2
Jν ]εJ

+
∑

jλij′λ′i′
(Dλi

j (Jν)Dλ′i′
j′ (Jν) + Fλij (Jν)Fλ

′i′
j′ (Jν))IJ (jλi|j′λ′i′)

+ 2
∑
jλi

(CJνDλi
j (Jν)− EJνF

λi
j (Jν))V (Jjλi)

+ 2
∑
jλi

(CJνFλij (Jν) + EJνD
λi
j (Jν))W (Jjλi)

− 2CJνEJνGJ − 2
∑

jλij′λ′i′
Dλi
j F

λ′i′
j′ SJ(jλi|j′λ′i′).

We give the explicit expressions for the quantities entering the above formulas
with short comments

LJ (jλi|j′λ′i′) = πλπλ′
∑
j1

ψλ
′i′
j1j ψ

λi
j1j′

{
j′ j1 λ
j J λ′

}
,

GJ =
〈∣∣{α̃+

JM ,
[
H,α+

JM

]}∣∣〉 =
√

2
∑
λij

πλ
πJ

Γ (Jjλi)ϕλiJj ,

V (Jjλi) =
〈∣∣∣{[αJM , H ] , P+

jλi (JM)
}∣∣∣〉 =

= − 1√
2
Γ (Jjλi)− 1√

2

∑
j′λ′i′

(TJ (jλi; j′λ′i′) + LJ (jλi|j′λ′i′))Γ (Jj′λ′i′).

As a result of the application of the equation of motion method, the matrix el-
ements V (Jjλi) between quasiparticle and quasiparticle

⊗
phonon states differ by

the ones obtained earlier [2] by an additive containing TJ (jλi|j′λ′i′)

TJ(jλi|j′λ′i′) = πλπλ′
∑
j1

ψλij1j′ϕ
λ′i′
j1j

{
j′ j1 λ
j J λ′

}
.

W (Jjλi) =
〈∣∣∣{[α+

JM , H
]
, P̃+

jλi (JM)
}∣∣∣〉 =

= −1
4
πλ
πJ

∑
i′τ0

Aτ0 (λii′)ϕλi
′

Jj

−1
4

∑
λ′j′i′i′′τ0

Aτ0 (λ′i′i′′)
πλ′

πJ

[
ϕλ

′i′
Jj′ LJ (jλi|j′λ′i′′)− ψλ

′i′′
Jj′ TJ (jλi|j′λ′i′)

]
.

The matrix elementsW (Jjλi) appear after the inclusion of the backward-going
terms in the operator (3) and they present a central issue of this work.
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SJ (jλi|j′λ′i′) =
〈∣∣∣{P̃+

jλi (JM) ,
[
H,P+

j′λ′i′ (JM)
]}∣∣∣〉 = −Gj′TJ (jλi|j′λ′i′) ,

IJ (jλi|j′λ′i′) =
〈∣∣∣{Pjλi (JM) ,

[
H,P+

j′λ′i′ (JM)
]}∣∣∣〉 ,

IJ (jλi|j′λ′i′) + IJ (j′λ′i′|jλi) = 2δjj′δλλ′δii′ (ωλi + εj) +

+ LJ (j′λ′i′|jλi) (εj′j + ωλ′i′ + ωλi)−RJ (jλi|j′λ′i′) ,

KJ(jλi|j′λi′) =
1
2
[
IJ (jλi|j′λ′i′) + IJ (j′λ′i′|jλi)

]

RJ (jλi|j′λ′i′) =

=
1
4

∑
i1τ0

[
Aτ0 (λi1i)LJ (j′λ′i′|jλi1) +Aτ0 (λ′i1i′)LJ (jλi|j′λ′i1)

]
+

+
1
4

∑
λ1i1i2j1τ0

Aτ0 (λ1ii
′)
[
LJ (jλi|j1λ1i1)LJ (j′λ′i′; j1λ1i2) +

+ LJ (j′λ′i′|j1λ1i1)LJ (jλi|j1λ1i2)
]
.

The quantities LJ (jλi|j′λ′i′) , TJ (jλi|j′λ′i′) and RJ (jλi|j′λ′i′) vanish if the
Pauli principle is not respected.

3 Approximations

3.1 General

As has been shown in [2] LJ are alternating quantities and their diagonal values are
much greater than the nondiagonal ones. This is natural from the physical point of
view as the Pauli principle is violated most probably in the configurations formed
by identical quasiparticles. The same applies for the new quantities TJ .

LJ(jλi|j′λ′i′) = L(Jjλi)δjj′δλλ′δii′ ,

TJ (jλi|j′λ′i′) = T (Jjλi)δjj′δλλ′δii′ ,

where

L(Jjλi) = π2
λ

∑
j′

(
ψλij′j

)2
{
j j′ λ
j J λ

}
,
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T (Jjλi) = π2
λ

∑
j′

ψλij′jϕ
λi
j′j

{
j j′ λ
j J λ

}
.

In this approximation

V (Jjλi) = − 1√
2
(1 + L(Jjλi) + T (Jjλi))Γ (Jjλi) .

The vertice V is renormalized by the factor (1+L(Jjλi)+T (Jjλi)). In config-
urations with strong Pauli principle violation the quantities L(Jjλi) go to −1 and
the quantities T (Jjλi) go to 0. The role of the term T (Jjλi) in the renormalization
becomes more important as the phonon collectiveness increases.

W (Jjλi) = −1
4
πλ
πJ

(1 + L(Jjλi)− L(jJλi))
∑
i′τ0

Aτ0 (λii′)ϕλi
′

Jj .

As with the vertices V , the vertices W are renormalized now by the factor
(1 + L(Jjλi) − L(jJλi)) and again in configurations with strong Pauli princi-
ple violation the quantities L(Jjλi) go to −1 and the quantities L(jJλi) go to 0.
The results for V and W show that configurations with L(Jjλi) close to −1 must
be excluded from the configuration space.

KJ (jλij′λ′i′) = δjj′δλλ′δii′ (1 + L(Jjλi)) (ωλi + εj −R (Jjλi)) ,

R (Jjλi) =
RJ (jλi|jλi)
1 + L(Jjλi)

.

The quantities R (Jjλi) play a very important role as they shift the values of
the poles and this shift depends on the extent of the Pauli principle violation [2].

Neglecting GJ and SJ (jλi|j′λ′i′), we arrive at the system of equations [6][(
εJ 0
0 −εJ

)
+

(
M11 M12

M21 M22

)](
CJν
−EJν

)
= ηJν

(
CJν
−EJν

)
,

where

M11 =
∑
jλi

1
(1 + L (Jjλi))

(
V 2 (Jjλi)

ηJν − (ωλi + εj −R (Jjλi))
+

+
W 2 (Jjλi)

ηJν + ωλi + εj −R (Jjλi)

)
, (5)

M22 =
∑
jλi

1
(1 + L (Jjλi))

(
W 2 (Jjλi)

ηJν − (ωλi + εj −R (Jjλi))
+

+
V 2 (Jjλi)

ηJν + ωλi + εj −R (Jjλi)

)
,
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M12 = M21 =
∑
jλi

V (Jjλi)W (Jjλi)
(1 + L(Jjλi))

(
1

ηJν + ωλi + εj −R(Jjλi)
−

− 1
ηJν − (ωλi + εj −R (Jjλi))

)
,

leading to the equation

M12M21 = (εJ +M11 − ηJν) (M22 − εJ − ηJν). (6)

3.2 Limit Cases and Analisys

The equation (6) can be approximated by the following one

εJ − ηJν ≈ −M11 −
M2

12

|2εJ − (M22 −M11) |
. (7)

Therefore, neglecting the backward amplitudes, i.e. setting W (Jjλi) = 0, (7)
immediately reduces to the secular equation obtained earlier [2] :

εJ − ηJν =
∑
jλi

V 2 (Jjλi)
((ωλi + εj −R (Jjλi))− ηJν) (1 + L (Jjλi))

. (8)

The significant difference for the solution ηJ of the equation (7) as compared to
the equation (8) comes from the second term in the r.h.s. of the expession (5) which
contributes to a shift of the first solution of equation (7) to higher energies. The
second term of the r.h.s. of equation (7) also contributes in the same direction but to
a much smaller extent. The shift in energy becomes larger as the interaction between
the quasiparticles and phonons increases. A critical value for the interaction exists as
in (8) but now due to the second type of terms in M11 an increase in the interaction
leads to a shift of the first solution towards the pole as contrary to the case neglecting
backward amplitudes where the solution moves in the opposite direction.

The inclusion of the matrix element GJ in the system of equations can be ac-
counted as a change of M12 to M12 +GJ but the resulting shift in the first solution
turns out to be negligible.

4 Numerical Results

In order to give a qualitative picture of the effects on the structure of the low-lying
states imposed by the backward-going amplitudes, numerical calculations for 131Ba
were performed. This isotope belongs to the transitional region where the anhar-
monic effects play a gradually increasing role at low and mainly at intermediate
energies and therefore the results presented in this section may lack some accuracy
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because the wave function (2) does not contain configurations to account for these
effects. The parameters of the Woods-Saxon potential are as follows:

Table 1. Parameters of the Woods-Saxon potential for 131Ba.

A N,Z r0, fm V0, MeV κ, fm−2 α, fm−1 GN,Z , MeV

127 N = 74 1.280 43.40 0.413 1.613 0.124

127 Z = 53 1.240 59.72 0.350 1.587 0.130

Our study shows that in realistic calculations one must include phonons with
λ = 2, 3, 4, 5. The strength parameters κ(λ) are adjusted so that the odd energy
spectrum of the low-lying states is reasonably close to the experimental values. As
a result, the energy of the first quadrupole state of 130Ba has a value that is much
higher than the experimental one.

Solving the systems of equations (4), one can find the structure of the wave
functions (2) and the energies of the excited states. Working in a diagonal approx-
imation for LJ and TJ this system reduces to a generalized eigenvalue problem.
In Figure 1 a comparison between the experimental values of the energies and the

Figure 1. Low-lying energy spectrum of 131Ba (in KeV). The first column gives the exper-
imental values [9], the second is the unperturbed 1qp spectrum, the third gives the levels
resulting from the solution of (8), the fourth is the full calculation with backward amplitudes
and Pauli principle corrections.
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theoretical calculations is presented. We restrict the calculation to the six neutron
states 1/2+

, 3/2+
, 9/2−, 11/2−, 5/2+

, 7/2+. The level ordering presented in the
third column on this figure generally agrees with the one obtained in [5]. The results
clearly support the conclusion following from (7) as the first solutions obtained af-
ter the inclusion of the backward-going terms become closer to the first poles and
consequently closer to the second solution thus significantly reducing the gap be-
tween the first 1/2+ and the second 1/2+ states as well as between the first 3/2+

and the second 3/2+ states. The intruder state 9/2− deserves a special attention.
The wave function of this state is practically a pure quasiparticle

⊗
phonon state

with a structure [1h11/2

⊗
2+
1 ]9/2− . The significant reduction of the energy of this

state is due to the Pauli principle correction, the inclusion of which is essential for
the correct ordering of the first several levels. Along with the experimental energies
our calculations provide a reasonable description of the spectroscopic factors for
the (d, p)-reactions: for the states 1/2+ and 3/2+ having experimentally measured
values of the spectroscopic factors of 0.53 and 1.03 respectively, our calculations
give 0.46 and 1.36.

5 Conclusion

The comparison between theoretical calculations and experimental data for 131Ba
has shown that in order to describe the structure of the low-lying states in odd-mass
nuclei far from the magic numbers one needs to take into account the Pauli principle
and the ground state correlations effects simultaneously. Calculations for other Ba
isotopes are in progress now. To improve this approach a self-consistent description
of the mean field with more realistic effective nucleon-nucleon forces is desirable.
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