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Abstract. Proca equation is a relativistic wave equation for a massive spin-1 particle. The
weak interaction is transmitted by such kind of vector bosons. Also vector fields are used to
describe spin-1 mesons (e.g. ρ and ω mesons). After a brief biography, the paper presents an
introduction into relativistic field theory, including Klein-Gordon, Dirac, and Maxwell fields,
allowing to understand this scientific achievement and some consequences for the theory
of strong interactions as well as for Maxwell-Proca and Einstein-Proca theories. The modern
approach of the nonzero photon mass and the superluminal radiation field are also mentioned.

1 Introduction and Short Biography

A. Proca, one of the greatest physicists of 20th century, was born in Bucharest
on October 16, 1897. Biographical details can be found in a book editted by his
son [1], where his publications are reproduced; see also [2] the web site [3] with
many links and W. Pauli’s biography [4]. He passed away in the same year with
A. Einstein. His accomplishments in theoretical physics are following the develop-
ments of prominent physicists including Maxwell, Einstein and Dirac. As a young
student he started to study and gave public talks on the Einstein’s theory of relativ-
ity. Then his PhD thesis was dedicated to the Dirac’s relativistic theory of electrons.
Proca equation is a relativistic wave equation for a massive spin-1 particle. Some of
the other relativistic wave eqs. are: Klein-Gordon eq. describing a massless or mas-
sive spin-0 particle; Dirac equation for a massive spin-1/2 particle; Maxwell eqs. for
a massless spin-1 particle, etc. In field theory, the Proca action describes a massive
spin-1 field of mass m in Minkowski spacetime. The field involved is a real vector
field. Maxwell eqs. and Proca eqs. may be found in many textbooks [5] as impor-
tant examples of relativistically invariant formulation of the field equations for a free
field; see also [6, 7]. There are many publications mentioning even in the title the
Einstein-Proca (e.g. [8–11]), Proca [12, 13], or Maxwell-Chern-Simons-Proca [14]
theory.

Shortly after finishing in 1915 the Gheorghe Lazar high school in Bucharest
Proca had to interrupt his studies because the first world war started. After the war
(1918–22) he was student at the Polytechnical School (PS) specialized in Electrome-
chanics. Next years he was employed by the Electrical Society, Câmpina, and in the
same time he has also been assistant professor of Electricity, PS Bucharest. In 1923
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he moved to France because he felt he “have something to say in Physics”. In two
years brilliantly passed the exams and was graduated by the Science Faculty, Sor-
bonne University, Paris. As an experimentalist at the Institut du Radium he was
very much appreciated by Marie Curie. Shortly she realized he is very interested by
the theory and encouraged him to join the newly founded Institut Henri Poincaré. In
1930 Proca received the French citizenship and married the Romanian Marie Berthe
Manolesco. He started to work as a Boursier de Recherches at his PhD thesis under
L. de Broglie’s supervision. The thesis was defended in 1933 in front of a famous
commission: Jean Perrin, L. Brillouin, and L. de Broglie. In 1934 he was one year
with E. Schrödinger in Berlin and few months with N. Bohr in Copenhagen, where
he met Heisenberg and Gamow.

From 1936 to 1941 he developed the theory of the massive vector (spin 1) boson
fields governing the weak interaction and the motion of the spin-1 mesons; Proca
equations refer to this kind of fields, and are frequently used in Field Theories. Pres-
tigious scientists like Yukawa, Wentzel, Taketani, Sakata, Kemmer, Heitler, Fröhlich
and Bhabha, promptly reacted in favour of his equations in 1938. W. Pauli [15, 16]
mentioned Proca’s theory in his Nobel lecture. As a particular sign of his world-wide
recognition one can mention the invitation to attend in 1939 the Solvay Congress.

During the second world war he was for a short time Chief Engineer of the
French Radiobroadcasting Company. Then in 1943 he moved to Portugal where he
gave Lectures at University of Portô. In 1943–45 was in United Kingdom invited by
the Royal Society and British Admiralty to join the war effort.

After the war in 1946 he started in Paris the Proca Seminar with many presti-
gious invited speakers from France and abroad. This seminar contributed very much
to the education of young French scientistists willing to work in the field of particle
physics. Unfortunately Proca’s attempts in 1949 and 1950 to get a chair of Physics
at the Sorbonne University and College de France failed for obscure reasons. Nev-
ertheless in 1950 he accepted to organize with P. Auger the Theoretical Physics
Colloquium of CNRS and in 1951 to be the French delegate at the General Meet-
ing of International Union of Physics. Starting with 1953 Proca had to fight with a
laryngeal cancer until December 13, 1955 when he passed away.

2 Particles and Fields

The projection of angular momentum of a particle can be denoted by lz�, with lz
an integer −l ≤ lz ≤ l. The intrinsic angular momentum, s, is called spin. Ac-
cording to the spin values the particles obey to the Fermi-Dirac or Bose-Einstein
statistics. A fermion [s = (n + 1/2)�, n integer] is called spinor if s = �/2,
e.g. leptons (e, ν, μ, τ ) or spinor-vector if s = (3/2)�. A boson (s = n�) can be
scalar (s = 0), vector (s = �, e.g. ω, ρ mesons, m = 0 photons, weak mas-
sive W±, Z0 bosons, m = 0 gluons), or tensor (s = 2�, e.g. graviton). Vector
bosons play a central role as they are mediators of three (of the four) fundamen-
tal interactions: electromagnetic, weak, and strong. Tensor bosons are assumed to
mediate the gravitation (see the Table 1). A particle is a localized entity. A field
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Table 1. The four fundamental interactions.

FORCE RANGE TRANSMITTED BY BOSONS

gravitational long graviton, massless, spin 2

electromagnetic long photon (γ), massless, spin 1

weak interaction short W±, Z0, heavy, spin 1

strong interaction short gluons (g), massless, spin 1

is an assignment of a quantity to every point of space. Einstein’s special theory of
relativity allows for the existence of scalar, vector, tensor, fields. Examples of rel-
ativistic fields: Klein-Gordon (s = 0); Dirac (s = 1/2); Proca (s = 1, m �= 0);
Maxwell (s = 1, m = 0); Rarita-Schwinger (s = 3/2), and Gravitation (s = 2).
In particle physics, quantum field theories, cosmology and quantum gravity, the
natural units, � = c = 1, are used. The units of length, time and mass are ex-
pressed in GeV: 1 meter= 5.07× 1015 GeV−1; 1 second= 1.52× 1024 GeV−1 and
1 kg= 5.61 × 1026 GeV. The Newton’s gravitational constant is given in terms of
Plank’s mass G = M−2

Pl , whereMPl = 1.22×1019 GeV. In particle physics gravity
becomes important when energies or masses approach MPl.

Geometrical units, c = G = 1, are used in classical general relativity, and every
quantity is expressed in units of length, e.g. � = L2

Pl where the Planck lengthLPl =
1.6×10−33 cm. In gravitation (general relativity) quantum effects become important
at lenghth scales approaching LPl. We shall use in the following the natural units.

A contravariant and covariant four vector has four components

aμ = (a0; a1, a2, a3) ; aμ = (a0; a1, a2, a3) (1)

e.g xμ = (t;x, y, z) = (x0;x1, x2, x3), pμ = (E; �p ).
The metric tensor (covariant components)

gμν =

⎛⎜⎜⎝
1
−1

−1
−1

⎞⎟⎟⎠ (2)

For the Lorentz metric the contravariant form gμν = gμν . One can change a con-
travariant 4-vector into a covariant one by using the relationship aμ = gμνa

ν . One
assumes the Einstein’s convention: summ over repetead indices.

The scalar product is aμbμ = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − �a�b. The
derivatives ∂μ = (∂0;−∇); ∂μ = (∂0; ∇) ∂μ∂μ = ∂2

0 −∇2 = ∂μ∂μ = �. ∇2 is

the Laplacian and � =
(
∂2

∂t2 −∇2
)

is the d’Alembertian.

For a conservative force, �F , there is a potential V such that �F = −∇V . The
Lagrangian in terms of the generalized coordinates qi and velocities q̇i is given by
L = T − V , where T is the kinetic energy. According to the Hamilton’s principle,
the classical action developed during the time interval t2 − t1
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S =
∫ t2

t1

L(qi, q̇i, t)dt (3)

has a stationary value (δS = 0) for the dynamical path of motion. The Euler-
Lagrange eq.

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (4)

is obtained by performing a calculus of variations which leads to the Newton’s sec-
ond law in classical mechanics of a point particle.

In both special and general relativity one seeks covariant eqs. in which space
and time are given equal status. The above defined action is not covariant. In field
theory we replace the qi by a field ϕ(x) where x ≡ (t, �x). A covariant form of action
involves the Lagrangian density, L = L(ϕ, ∂μϕ), which is a functional integrated
over all space-time

S[ϕi] =
∫
L[ϕi, ∂μϕ] d4x (5)

The Lagrangian is the spatial integral of the density.
The least action principle leads to the Euler-Lagrange equation

δ

δϕ
S = −∂μ

(
∂L

∂(∂μϕ)

)
+
∂L
∂ϕ

= 0 (6)

The quantum mechanics can describe a system with a fixed number of particles
in terms of a many-body wave function. The relativistic quantum field theory with
creation and annihilation operators was developed in order to include processes (e.g.
n→ p+ e+ ν̄e or e+e− → 2γ) in which the number of particles is not conserved,
and to describe the conversion of mass into energy and vice versa.

2.1 Klein-Gordon Field

For a massive (m �= 0) scalar (spin 0) and neutral (charge zero) field, the Lagrangian
density (function of the fields φ and their x, y, z, t derivatives) is

L = (1/2)[(∂μφ)(∂μφ)−m2φ2] (7)

The Euler-Lagrange formula requires

(� +m2)φ = 0 (8)

i.e. the Klein-Gordon equation. It was quantized by Pauli and Weisskopf in 1934.
Relativistic wave equations are invariant under Lorentz transformations, expressing
the invariance of the element of 4-vector length, ds2 = dt2−(dx2+dy2+dz2). The
Klein-Gordon equation was historically rejected as a fundamental quantum equation
because it predicted negative probability density.

For free particles with an internal degree of freedom (e.g. electric charge) the
real valued field is replaced by complex fields φ∗ �= φ, hence nonhermitean field
operators φ̂† �= φ̂.
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2.2 Dirac Field

Dirac was looking for an equation linear in E or in ∂/∂t. For a massive spinor (spin
1/2) field the Lagrangian density is

L = ψ̄(iγμ∂μ −m)ψ ; ψ̄ = ψ∗γ0 Dirac adjoint (9)

where the four 4× 4 Dirac matrices γμ (μ = 0, 1, 2, 3) satisfy the Clifford algebra

{γμ, γν} = γμγν + γνγμ = 2gμν (10)

The corresponding equation of motion is the Dirac equation

(iγμ∂μ −m)ψ = 0 ; i(∂μψ̄)γμ +mψ̄ = 0 (11)

One set of 4× 4 matrices is

γ0 =
(
I 0
0 I

)
, γi =

(
0 σi

−σi 0

)
(12)

where one has 2× 2 matrices: identity I , zero and Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(13)

Quantization of the Dirac field is achieved by replacing the spinors by field operators
and using the Jordan and Wigner quantization rules. Heisenberg’s eq. of motion for
the field operator ψ̂(�x, t) reads

i
∂

∂t
ψ̂(�x, t) = [ψ̂(�x, t), Ĥ ] (14)

There are both positive and negative eigenvalues in the energy spectrum. The later
are problematic in view of Einstein’s energy of a particle at rest E = mc2. Dirac’s
way out of the negative energy catastrophe was to postulate a Fermi sea of an-
tiparticles. This genial assumption was not taken seriously until the positron was
discovered in 1932 by Anderson.

2.3 Maxwell Field

In classical field theory the differential form of Maxwell eqs. are given by Gauss’s,
Ampère’s and Faraday’s laws plus Maxwell’s extensions. For homogeneous materi-
als:

∇ · �D = ρ ; ∇ · �B = 0 ; �D = ε �E ; �B = μ �H (15)

∇× �E = −∂
�B

∂t
; ∇× �B/μ = �j + ε

∂ �E

∂t
(16)
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Photons are assumed to be massless (forces of infinite range). Electrodynamics is
gauge invariant (ϕ and �A are not unique): Maxwell eqs. do not change under gauge
transformation [with χ = χ(�r, t) an arbitrary differentiable function]

�A→ �A+∇χ(�r, t) ; ϕ→ ϕ− ∂χ

∂t
(17)

The 4-potential and current density are Aμ = (ϕ; �A ) = (A0; �A ), jμ = (ρ;�j ).
Scalar, ϕ, and vector, �A, potentials are introduced via �E = −∇ϕ − ∂ �A/∂t, �B =
∇ × �A. The four vector potential Aμ = (ϕ, �A) ; gμνA

μAν = ϕ2 − �A2.
The antisymmetric field-strength tensor Fμν = ∂μAν − ∂νAμ with components
F 0i = ∂0Ai − ∂iA0 = −Ei and F ij = ∂iAj − ∂jAi = −εijkBk. The Levi-Civita
symbol εijk is antisymmetric under exchange of any two indices. The Lagrangian
density is

L = (E2 −B2)/2− ρV +�j �A = −1
4
FμνF

μν − jμA
μ (18)

The corresponding Euler-Lagrange eqs. are Maxwell’s eqs. Kaluza and Klein at-
tempted to unify the gravitation and electromagnetic theories by extending general
relativity in 5 dimensions.

2.4 Proca (Massive Vector Boson) Field

Proca extended the Maxwell eqs. in quantum field theory. In 1934 for massive pos-
itively charged particles with spin there were two alternatives: Dirac eqs. having
a spectrum of positive and negative energies, a positive charge and a finite spin
(±E,+q, s �= 0) or Pauli-Weisskopf based on Klein-Gordon eqs. (±E,±q, s = 0).
Proca worked out new equations which would allow for positive and negative en-
ergies, both signs of the charge, and a finite spin (±E,±q, s �= 0). For a massive
vector boson (spin 1) field the Proca equation [17]

�Aν − ∂ν(∂μAμ) +m2Aν = jν (19)

is obtained as a Euler-Lagrange eq. emerging from the Lagrangian

L = −1
4
FμνF

μν +
1
2
m2AμA

μ − jμA
μ (20)

after expressing the field-strength tensor, Fμν , in terms of the four potential Aμ.
The Maxwell field is a massless (m = 0) Proca field. In contrast to the Maxwell
field the Lorentz condition is fulfilled by Proca field. In his Nobel lecture [15], W.
Pauli noted: “The simplest cases of one-valued fields are the scalar field and a field
consisting of a four-vector and an antysimmetric tensor like the potentials and field
strengths in Maxwell’s theory. While the scalar field is simply fulfilling the usual
wave equation of the second order in which the term proportional to μ2 has to be
included, the other field has to fulfill equations due to Proca which are generalization
of Maxwell’s equations which become in the particular case μ = 0.”



Proca Equations of a Massive Vector Boson Field 181

Assuming m �= 0 one has ∂νAμ = (1/m2)∂νjν . If the source current is con-
served (∂νjν = 0) or if there are no surces (jν = 0) it follows that ∂νAν = 0.
The field eq. gets simplified (� + m2)Aν = 0 for free particles, leading to four
Klein-Gordon eqs. for projections.

After Yukawa’s [18] hypothesis of a particle mediating the nuclear interaction
this particle was initially called mesotron, or alternatively the Proca particle (see for
example the ref. [19]).

3 Yukawa and the Strong Interaction (Color Force)

Hideki Yukawa (1907-1981) was born in Tokyo as a third son of Takuji Ogawa.
Genyo Yukawa adopted1 him when he married Sumiko Yukawa in 1932. Hideki
won the Nobel Prize in 1949 for his prediction (in 1934) of the existence of mesons
on the basis of theoretical work on nuclear forces [18]. His potential (of a Debye
type)

g2 e
−λr

r
(21)

can explain the short range of the strong interaction. At that time there was no link
between the quantum theory of fields and nuclear theory, except the Fermi’s β-decay
theory. When he was only 27 years old he predicted the existence of new particles
now called pions. Yukawa calculated a mass ∼ 200me (me is the electron mass).
By analogy with photons mediating the electromagnetic interaction he assumed the
nuclear forces, acting between nucleons, are mediated by such bosons. As he sug-
gested, the study of cosmic rays gave the first experimental evidence of the new
particles. Yukawa employed a scalar field equation. The right vector field was intro-
duced by Proca (see e.g. [16]: “This case holds the center of current interest since
Yukawa supposed the meson to have the spin 1 in order to explain the spin depen-
dence of the force between proton and neutron. The theory for this case has been
given by Proca”). At present we know that the strong interaction acting between
quarks is mediated by gluons.

Yukawa was ahead of his time and found the key to the problem of nuclear
forces. His paper was unnoticed until 1937 when Anderson announced his dicovery
in cosmic rays of a particle with a mass similar to that required by Yukawa’s theory.
Soon it was clear that Anderson’s “mesotron” (now the muon or μ-meson) did not
possess the right properties; it is in fact a lepton. Cecil Powell (Nobel prize in 1950)
discovered in 1947 the π-mesons (pions) in cosmic rays.

The name meson means middle-weight between electron and nucleon. Cosmic
rays contained two intermediate mass particles: muon and pion. The muon is a lep-
ton (a heavy counterpart to the electron) and not a meson (although it is still called
μ-meson for historical reasons), but the pion was a true meson of the kind predicted
by Yukawa. Around 1970 there were many theories [20] attempting to explain the

1 Adoption was a common practice in Japan in a family without son.
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nuclear interaction. Presently according to quantum chromodynamics, the strong in-
teraction, mediated by massless gluons, affects only quarks and antiquarks; it binds
quarks to form hadrons (including proton and neutron). There are 8 types of gluons.

The theory of the massive vector bosons with spin 1 was developed by A. Proca.
Such bosons (W± and Z0 bosons) are mediators of the weak interaction. Proca’s
equations are also used to describe spin 1 mesons, e.g. ρ and ω mesons.

4 Nonzero Photon Mass and the Superluminal Radiation Field

The effects of a nonzero photon rest mass can be incorporated into electromagnetism
through the Proca eqs. The massive electromagnetic field is described by Maxwell-
Proca eqs.

∇ · �E =
ρ

ε0
− μ2

γϕ ; ∇ · �B = 0 (22)

∇× �E = −∂
�B

∂t
; ∇× �B = μ0

�j + μ0ε0
∂ �E

∂t
− μ2

γ
�A (23)

where μ−1
γ = �/(mγc) is the Compton wave-length of a photon with mass mγ .

Implications of a massive photon: variation of c; longitudinal electromagnetic radi-
ation and gravitational deflection; possibility of charged black holes; the existence
of magnetic monopoles [21]; modification of the standard model [22], etc. An upper
limit for the photon rest mass [23] is mγ ≤ 1× 10−49 g≡ 6× 10−17 eV.

The concept of a nonzero rest mass graviton may be defined [24] in two ways:
phenomenologically, by introducing of a mass term in the linear Lagrangian density,
as in Proca electrodynamics, and self-consistently, by solving Einstein’s equations
in the conformally flat case. The rest mass of the graviton was given in terms of the
three fundamental constants: gravitational, Planck, and light velocity. The Einstein-
Proca equations, describing a spin-1 massive vector field in general relativity, have
been studied [8] in the static spherically-symmetric case. It was shown [25] that a
special case of the metric-affine gauge theory of gravity is effectively equivalent to
the coupled Einstein-Proca theory.

Einstein-Proca field eqs. are frequently discussed in connections with dark mat-
ter gravitational interactions [26]. At the level of string theories there are hints that
non-Riemannian models, such as Einstein-Proca-Weyl theories [9] may be used
to account for the dark matter. Other developments: Proca-Wightman field [27];
Maxwell-Chern-Simons-Proca model [28].

Superluminal (faster than light) particles, tachyons, with an imaginary mass of
the order of me/238, can be described by a real Proca field with a negative mass
square [29]. They could be generated in storage rings, jovian magnetosphere, and
supernova remnants.

In conclusion, A. Proca lived in a period of great discoveries and development
of quantum field theories to which he contributed in an essential way. After about
eighty years of use, Proca equation of the vector boson fields remains one of the
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basic relativistic wave equation. The weak interaction is transmitted by such kind of
vector bosons. Also vector fields are used to describe spin-1 mesons such as ρ and
ω mesons.
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