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Abstract. The energy spectrum fluctuations of quantum systems can be formally considered
as a discrete time series. The power spectrum of such signal gives rise to 1/f noise in chaotic
systems, whereas integrable systems present 1/f2 noise. This statistic is very useful for the
analysis of two kinds of imperfect spectra: those with missing levels whose number and
position are unknown, and those in which all the quantum numbers cannot be determined and
levels of different symmetries are mixed. The power spectrum analysis provides an estimation
of the number of symmetries and the fraction of mixing and missing levels.

1 Introduction

During the last past two decades, spectral statistical analysis has become the main
tool for the study of quantum chaos. It is now well established, through numeri-
cal simulations and the analysis of experimental data, that the spectral statistics of
systems whose classical analog is chaotic follow the predictions of Random Matrix
Theory (RMT) [1]. When the classical analog is regular, the statistical properties
of the spectra are identical to the properties of a sequence of uncorrelated random
numbers, and follow Poisson statistics [2]. Consequently, a quantum system is con-
sidered chaotic if the statistical properties of its spectrum coincide with those of
RMT.

In this work, we present an alternative way to study the spectral fluctuations of
quantum systems. Using an appropiate statistic, called δq, the sequence of energy
levels can be viewed as a time series, and it can be studied by means of traditional
methods borrowed from this discipline. In particular, it has been shown [3] that
chaotic quantum systems are characterized by 1/f noise and integrable quantum
systems by 1/f2 noise. The full functional forms of the power spectrum were de-
rived for the classical RMT ensembles [4]. The analysis of this new statistic has been
shown to be extremely useful in different situations by a number of authors [5–11].
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As an application of this formalism, we study what happens if we deal with
spectra with missing levels or several mixed symmetries. The change in the spectral
properties of sequencies with missing levels has been studied since long ago [12].
Results for the number variance statistic Σ2 were already reported in [13]; very
recently, Bohigas and Pato studied how the next-neighbor spacing distribution P (s)
behave when only a fraction Fo of the levels is detected [14]. Also the next-neighbor
spacing distribution P (s) was studied for spectra involving several symmetries [15,
16]; the long-range correlations for this case were derived by Guhr et al. [17]. Here
we show the behavior of δq statistic for these cases: we derive some theoretical
results and we compare them with realistic nuclear spectra simulated through shell
model calculations.

2 Unfolding and Definition of δq Statistic

The objective of every spectral statistical analysis is to characterize the properties
of the fluctuations of the spectra. To tackle this task we assume that the density of
states ρ(E) can be separated into a smooth part and a fluctuating part,

ρ(E) = ρ̄(E) + ρ̃(E), (1)

where ρ̄(E) is the smooth part of the level density and ρ̃(E) is the fluctuating part.
The same separation can be defined for the accumulated level density N(E), which
measures the number of levels up to a certain energy E in the system

N(E) =
∫ E

−∞
dE′ρ(E′). (2)

Therefore, we can distinguish between a smooth and a fluctuating part,

N(E) = N̄(E) + Ñ(E). (3)

The procedure used to extract the information in the fluctuating part of the spec-
tra is called unfolding, and it consists in removing the secular behavior of the level
density. It can be achieved transforming the actual spectrum {Ei} in a dimensionless
one {εi} by means of the map εi = N̄(Ei).

To study the spectral fluctuations as a time series we use the δq statistic, which
is defined as follows,

δq = εq+1 − ε1 − q. (4)

It represents the deviation of the excitation energy of the (q + 1)th unfolded level
from its mean value. If we appropiately shift the ground state of the system, it also
represents the accumulated level density fluctuations at E = Eq+1.

The δq statistic can be viewed as a time series if we establish an analogy between
the index q, which represents the order in energy, and the time; see [3] for a complete
discussion. One of the most simplest way to study the statistical properties of this
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time series is by means of the power power spectrum, i. e. the square modulus of its
Fourier transform,

P δk =
1
N

∣∣∣∣∣
N−1∑
q=0

δq exp (−2πqk/N)

∣∣∣∣∣
2

, (5)

where N is the number of levels of the sequence. We use this tool to analyze spec-
tral fluctuations; a more sophisticated analysis, involving high order momenta, is
proposed in [18].

3 1/f Noise as a Fingerprint of Quantum Chaos

3.1 Numerical Results

As it was pointed in the introduction, RMT can be considered the paradigmatic
model of quantum chaos [17]. Therefore, a simple and generic way to determine
the behavior of δq statistic for integrable and chaotic systems consists in studying
the power spectrum P δk of random matrix spectra. This theory deals with three ba-
sic Hamiltonian matrix ensembles that describe the spectra of chaotic systems: the
Gaussian orthogonal ensemble (GOE) of N -dimensional matrices, applicable for
time-reversal invariant systems either with rotational symmetry or with integer spin
when the rotational symmetry is broken; the Gaussian unitary ensemble (GUE),
applicable for systems without time-reversal symmetry; and the Gaussian symplec-
tic ensemble (GSE), applicable for time-reversal invariant systems with half-integer
spin and broken rotational symmetry. There are other more complex ensembles like
deformed ensembles, band matrix ensembles, etc., but they will not be considered
in this work. Instead, we include an ensemble of diagonal matrices whose elements
are random Gaussian variables; we call it the Gaussian diagonal ensemble (GDE).

Figure 1. P δ
k for GOE, GUE, GSE and GDE spectra. The plots are displaced in the vertical

axes to avoid overlapping.
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Figure 1 shows the average value of P δk for the random matrix ensembles intro-
duced above, using a double logaritmic scale. In all the cases we have used matrices
of dimension N = 1000, and we have averaged over 30 different matrices of each
ensemble. It is clearly seen that the four cases are well described by means a power-
law P δk ∝ k−α, at least in the low and mid frequency region. A least-squares fit
gives rise to the following results: αGDE ≈ 2, and αGOE ≈ αGUE ≈ αGSE ≈ 1.
Chaotic systems are thus characterized by a 1/f noise, whereas integrable ones dis-
play a 1/f2 noise.

3.2 Theoretical Results

It has been shown [4] that the ensemble average of the δq power spectrum
〈
P δk

〉
can

be written in a compact form as

〈
P δk

〉
=

N2

4π2

[
K (k/N)− 1

k2
+
K (1− k/N)− 1

(N − k)2

]
+

1

4 sin2

(
πk

N

) +Δ. (6)

This result is valid for N � 1, k ∈ [1, 2, . . . , N − 1] and β = 0, 1, 2 and 4, that
is, for the four ensembles we are taking into account. The function K(τ) is the so
called spectral form factor

K(τ) =

〈∣∣∣∣∫ dερ̃(ε)e−i2πετ
∣∣∣∣2
〉
. (7)

This magnitude is well known for GOE, GUE, GSE and GDE [16]. It can be ob-
tained from the n-point correlation function, which gives the probability that n
eigenvalues take the values E1, E2, . . . , En irrespective of the positions of the rest
of the eigenvalues

Rn(ε1, ..., εn) =
N !

(N − n)!

∫ ∞

−∞
dεn+1...

∫ ∞

−∞
dεNPN (ε1, ..., εN ), (8)

where PN (ε1, ..., εN ) is the probability of finding the N eigenvalues in positions
ε1, ε2, ..., εN . For practical purposes, this quantity is usually written in terms of the
n-body cluster function Yn(ε1, ..., εn) = 1−Rn(ε1, ..., εn). The most importat case
is n = 2, which, for traslationally invariant spectra, depends only on the difference
between the energies, so we can write Y2(ε1, ε2) = Y2(ε2 − ε1) = Y2(ε). The form
factor can be obtained from this last quantity as follows [16]

K(τ) = 1−
∫ ∞

−∞
dεY2(ε) exp(−iεt/�). (9)

The term Δ is a correction due to the discrete nature of δq . Some subtle mathe-
matical details involved in the ensemble average procedure give rise to [13]
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〈
δ2q

〉
−

〈
Ñ(Eq)2

〉
=

1
3

∫ ∞

−∞
drdsY3(0, r, s)−

1
2

(∫ ∞

−∞
drY2(r)

)2

, (10)

for canonical ensembles and q � 1. Using this last equation, a straighforward de-
duction [4] allows us to obtain

Δ =

⎧⎨⎩−
1
12

for Gaussian Ensembles,

0 for Poisson.
(11)

The expresion (6) seems to be very complicated, far from the simple behavior
numerically found for RMT. Nevertheless, if we perform a Taylor expansion of this
equation, we find, for k � N and N � 1,

〈
P δk

〉
=

⎧⎪⎨⎪⎩
N

2βπ2k
for chaotic systems,

N2

4π2k2
for integrable systems.

(12)

That is, we reproduce the power-laws found numerically, with α = 1 for chaotic
systems, and α = 2 for integrable ones.

To test the expresion (6), we compare its predictions with numerical calculations
for different physical systems: a) a rectangular billiard in the high-energy region,
as an example of integrable system, and b) a shell-model calculation for a very
exotic nucleus, 34Na. Figure 2 shows the results of this comparison. It is clearly seen
that eq. (6) describes almost perfectly the numerical results in the whole frequency
region. It is included a zoom of the high frequency region to show that the theoretical
expression describes pretty well the deviations from the power-low behavior that
appear in this region.

(a) Rectangular billiard (b) 34Na

Figure 2. P δ
k for a rectangular billiard and for a shell-model calculation for 34Na. Dashed

lines represent the theoretical behavior predicted by (6).
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4 Analysis of Imperfect Spectra

4.1 Theory

The theoretical framework developed in the last section can be also applied to the
analysis of imperfect spectra, that is, with missing levels or mixed symmetries. Sup-
pose that there are l complete, infinite and stationary level sequences with level
densities ρi(ε), whose spectral fluctuations are given by an appropriate ensemble.
The relevant parameters of the problem are the probability ϕi(εq) of observing
one given level of the i-th sequence with energy εq, and the fractional densities

ηi = ρi(ε)/
(∑l

i=1 ρi(ε)
)

. In order to make the statistical analysis tractable we

consider two basic assumptions:

1. The probabilities ϕi(εq) are set equal to a constant ϕi for each sequence, mean-
ing that the energy levels are dropped randomly and uniformly from the spec-
trum. From now on, these quantities will be called the fractions of observed
levels.

2. The fractional densities are taken constant through the whole spectrum; there-
fore, except for a constant factor, the smooth shape of the different sequences is
the same.

Lets consider first the case of a single incomplete level sequence. Assuming that
the fraction of observed levels is 0 < ϕ < 1, it can be shown that the n-point cluster
functions are modified as [14]

Yn(ε1, ..., εn) = Yn(ε1/ϕ, ..., εn/ϕ). (13)

In what follows capital letters denote the statistical quanties of the actual spectrum,
while “calligraphic” letters denote the same quantities for the observed spectrum.

From eq. (13) it is possible to calculate all the magnitudes involved in P δk ; the
detalied calculations will be presented in a further paper [19]. The final result for
the power spectrum of δq statistic as a function of ϕ is

〈
Pδk

〉
=
N2ϕ

4π

⎡⎣K
(
ϕk
N

)
− 1

k2
+
K

(
ϕ(N−k)

N

)
− 1

(N − k)2

⎤⎦ +
1

4 sin2 (πk/N)
− ϕ2Δ.

(14)
Following a similar procedure, it is possible to calculate what happens if we

consider the superposition of l level sequences with different quantum numbers and
constant fractional densities ηi. Here we only show the main results; we refer the
reader interested in detais to [19].

The average power spectrum in the general case is

〈
Pδk

〉
=
N2

4π

l∑
i=1

ηiϕi

⎡⎣Ki

(
ϕik
Nηi

)
− 1

k2
+
Ki

(
ϕi(N−k)
Nηi

)
− 1

(N − k)2

⎤⎦+
1

4 sin2 (πk/N)

+ 〈ϕ〉2 Δ, (15)
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where Ki(τ) is the spectral form factor characteristic of the i − th sequence and〈
ϕ2

〉
=

∑l
i=1 ηi (ϕi)

2.
Another particular case is that of complete sequences; writing down Eq. (15)

when ϕi = 1, one obtains

〈
Pδk

〉
=
N2

4π

l∑
i=1

ηi

⎡⎣Ki

(
k
Nηi

)
− 1

k2
+
Ki

(
N−k
Nηi

)
− 1

(N − k)2

⎤⎦ +
1

4 sin2 (πk/N)
+Δ.

(16)

4.2 Numerics

In order to test the theoretical expression derived above, we have considered the sd
nucleus 24Mg, that has been used in refs. [3, 4] to show that the spectral fluctua-
tions of quantum chaotic systems exhibit 1/f noise. We follow the standard shell
model procedure to obtain a large enough number of energy levels. The construction
and diagonalization of the JT Hamiltonian matrices was carried out by using the
shell-model code NATHAN [20]. In this case, the valence space shells have positive
parity, and therefore all the states have positive parity. We have considered only the
cases with T = 0 and J = 0, 1, 2, 3, 4, 5, 6, 7 and 8.

Before we proceed to present the main results of this section, we describe briefly
how the different types of sequences used in the statistical analysis are built:

1. Mixed sequences. All the levels from different J spectra are gathered together
and ordered in increasing energy, regardless of their angular momentum; then
the resulting sequence is unfolded. The mixed sequence is divided in several
sets of N = 256 consecutive energy levels; the power spectrum of each set is
calculated using a fast Fourier transform routine, and finally all these sets are
used to compute some kind of “ensemble” average of the power spectrum. To
improve this kind of average and clarify the main trend of the power spectrum,
we divide the logarithmic frequency axis into equal bins and average locally the
power spectrum components in each bin.

2. Pure sequences. After unfolding every J spectrum, we divide it in several sets
of N = 256 consecutive levels.

〈
Pδk

〉
is calculated using the same procedure

described above.
3. Incomplete sequences. To generate incomplete sequences (pure or mixed) we

proceed as follows. Running along each sequence, the decision of keeping or
dropping a given level εq is made by means of a random variable x uniformly
distributed in the interval [0, 1] and a smooth cut-off function 0 ≤ χ(ε) ≤ 1
satisfying that

∑N
q=1 χ(εq)/N = ϕ. If x > χ(εq) the level is dropped from the

spectrum. With this procedure we drop roughly a fraction (1− ϕ) of the levels,
but this quantity can be slightly different from one sequence to another.

Figure 3 compares the predictions of Eq. (16) with the numerical values of
〈
Pδk

〉
calculated by using two pure sequences with J = 3 and J = 4 and a mixed sequence
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Figure 3. Theoretical power spectrum of the δq function for GOE (dashed line) and Poisson
(dotted line) and for the ensemble average of the superposition of two different GOE matrices
(solid line) compared to numerical averages calculated by using J = 3 and J = 4 pure
sequences of length N = 256 (open circles) and the superposition of these sequences (filled
circles).

that was obtained superposing these two sequences. Since the dimensions of the
two spectra are very similar, the fractional densities satisfy that η1 ≈ η2 ≈ 0.5. It
is clearly seen that one can distinguish (at least in this case) the behavior of

〈
Pδk

〉
for pure and mixed sequences, and also that the agreement between the theoretical
predictions and the numerical values is excellent.

Figure 4. Theoretical predictions of Eq. (15) for GOE (dotted line), GOE with a constant
fraction of observed levels ϕ = 0.8 (dashed line) and the superposition of two GOE with
constant ϕ = 0.8 (solid line). The theoretical values are compared with numerical averages
using incomplete pure J = 0 − 8 sequences of length N = 256 (open circles), and imcom-
plete mixed sequences of the same length (filled circles).
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To test if the theoretical expresions are also well suited to describe more involved
situations, the average power spectrum of δq for nine incomplete sequences (with
J = 0−8) and a mixed sequence is displayed in Figure 4. The fit of

〈
Pδk

〉
to the law

(15) is excellent. Moreover, the main point is that the behavior of
〈
Pδk

〉
for pure and

mixed sequences is clearly different along the whole frequency interval. Therefore
the separate analysis of the power spectrum in the low and high frequency regions
may provide us with information on the fraction of missing levels and on the number
of symmetries present in the spectrum, respectively.

5 Conclusions

We have shown that the fluctuations of the energy spectra of quantum systems can be
considered as time series. By means of an appropiate discrete statistic, δq, we have
established that quantum chaotic systems are characterized by an almost ubiquitous
property: the 1/f noise; moreover, quantum integrable systems present 1/f2 noise.

We have shown that the δq statistic can also be used to analyze spectra with
missing levels or mixed symmetries. We have obtained theoretical expressions for
the average δq power spectrum of spectra either with missing levels, mixed symme-
tries or missing levels as well as mixed symmetries. In order to test our predictions,
we have used the standard shell model description of the chaotic nucleus 24Mg. The
main conclusion is that our procedure can be used to determine both the fraction of
missing levels and the numer of symmetries involved in a spectrum. This is a very
interesting and relevant result because very often it is difficult to measure all the
levels in a given energy window and determine all the quantum numbers of every
level.
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