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Abstract. The dinuclear system model can be applied to nuclear structure. Here we study
deformed clusters which rotate with respect to the internuclear distance and exchange nu-
cleons. The model is used to explain the band structure of nuclear spectra, e. g. the parity
splitting observed in 238U.

1 Introduction

A nuclear molecule or a dinuclear system (DNS) consists of a configuration of two
touching nuclei (clusters) which keep their individuality. Such a system has two
main degrees of freedom which govern its dynamics: (i) the relative motion between
the nuclei describing the formation and decay of the dinuclear system and (ii) the
transfer of nucleons between the nuclei. The latter process changes the mass and
charge asymmetries which are defined by the coordinates

η =
A1 −A2

A1 +A2
and ηZ =

Z1 − Z2

Z1 + Z2
. (1)

These coordinates can be assumed as continuous or discrete quantities. For η =
ηZ = 0 we have a symmetric clusterization with two equal nuclei, and if η ap-
proaches the values ±1 or if A1 or A2 is equal to zero, a fused system has been
formed.

The DNS concept was suggested by V. V. Volkov [1, 2] to explain fusion reac-
tions. In the meantime the DNS model has been applied to a large variety of nu-
clear phenomena where cluster features play a dominant role. For nuclear structure
it has been used to describe the parity splitting [3, 4], normal- and superdeformed
bands [5,6] and the appearance of hyperdeformed states as nuclear molecular struc-
tures in heavy ion collisions [7]. As an example for parity splitting, we list in Table
1 the levels of the positive parity ground state and shifted negative parity rotational
bands of N = 152 isotones, which are calculated with the DNS model and com-
pared with available experimental data.

The DNS model found numerous applications in the prediction of the fusion
dynamics of heavy ions forming superheavy nuclei [8, 9] and in describing the ac-
companied quasifission process [10]. Also the binary and ternary fission processes
of heavy nuclei have been treated with the DNS model [11].
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Table 1. Calculated (E) and experimental (Eexp) energies (in keV) of the levels of the ground
state and first negative parity rotational bands (Kp = 0+) inN = 152 isotones. Experimental
data are taken from http://www.nndc.bnl.gov/nndc/ensdf/.

I 248Cm 250Cf 252Fm 254No

E Eexp E Eexp E Eexp E Eexp

0+ 0 0 0 0 0 0 0 0

1− 865 1049 823 811 773

2+ 43 43 43 43 47 47 44 44

3− 930 1094 888 881 838

4+ 143 144 143 142 155 146 145

5− 1046 1172 1003 1003 954

6+ 298 298 297 296 322 304 304

7− 1211 1167 1177 1119

8+ 504 505 503 500 544 516 518

9− 1423 1375 1398 1330

10+ 760 761 757 818 780 786

11− 1677 1680 1625 1661 1583

12+ 1061 1061 1056 1138 1091 1104

13− 1970 1938 1912 1963 1876

14+ 1404 1403 1394 1500 1445 1470

15− 2299 2238 2233 2297 2203

16+ 1784 1780 1767 1899 1838 1884

17− 2658 2574 2583 2659 2560

18+ 2197 2188 2175 2330 2267 2340

19− 3045 2944 2957 3044 2942

20+ 2641 2622 2609 2787 2725 2839

2 Rotation Modes in the Dinuclear Model

The clusters of the dinuclear system model are assumed to be deformed and to ro-
tate. In this case we have to discriminate three different coordinate systems: (i) the
space-fixed system with its origin at the center of mass, (ii) the molecular system
where the z′-axis is defined by the direction of the internuclear distance R, (iii)
body-fixed systems of clusters with axes x′′1 , y

′′
1 , z

′′
1 and x′′2 , y

′′
2 , z

′′
2 which are the

principal axes for the tensors of the moments of inertia of clusters 1 and 2, respec-
tively. If we include the mass asymmetry motion and β- and γ-vibrations, we can
write the general Hamiltonian as follows:

H =
p2
R

2μRR
+

L2 − L2
z′

2μRRR2
+

p2
η

2Bηη
+

3∑
i=1

I
(1)2
i

2�(1)
i

+
3∑
i=1

I
(2)2
i

2�(2)
i

+Tvib(β1, γ1) + Tvib(β2, γ2) + kinetic coupling terms

+U(R, η, orientation angles, β1, γ1, β2, γ2). (2)
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Here, L is the angular momentum of the molecular system and I
(1) or (2)
i=1,2,3 are the

angular momentum components for the rotation of the clusters 1 or 2, respectively,
with respect to the axes of the body-fixed systems of the clusters. The angular mo-
mentum L of the molecular system is connected with the reduced mass μRR of the
internuclear motion, depending on η and R. The total angular momentum of the
system is given as

J = L + I(1) + I(2). (3)

Further, Bηη is the mass for the mass asymmetry motion. For large mass asym-
metries, i. e. 1 − |η| � 1, Bηη can be estimated by relating the mass asymmetry
coordinate η to the octupole deformation coordinate β3. Such a relation between
η,R and β3 was derived in [12]:

β3 = −
√

7
4π

π

3
η(1− η2)

R3

R3
0

, (4)

whereR0 is the spherical equivalent radius of the corresponding compound nucleus.
If we take the value of Bβ3 = 200�

2 MeV−1 known from the literature [13], then
we obtain Bηη ≈ (dβ3/dη)2Bβ3 = 9.3 × 104M fm2 (M is the nucleon mass),
compatible with the one used in calculations [4].

The kinetic coupling terms in (2) are manifold. They describe the kinetic cou-
pling between the internuclear, mass asymmetry, β- and γ-vibrational and rotational
motions of the clusters and will be not further specified here (see for example [14]).
Under the assumption of a small overlap of the nuclei in the DNS, the potential
energy U is usually semi-phenomenologically calculated [15]

U = B1 + V1(β1, γ1) +B2 + V2(β2, γ2)−B12

+V (R, η, orientation angles, β1, γ1, β2, γ2). (5)

Here, Bi (i = 1, 2) are the experimental mass excesses (negative binding energies)
of the clusters andB12 of the compound nucleus, and Vi (i = 1, 2) are the potentials
for the individual nuclei depending on the quadrupole deformation coordinates. V
is the interaction between the nuclei, V = VC + VN , consisting of the Coulomb
and nuclear potentials. The nuclear part is calculated by a double folding procedure
with a Skyrme-type effective density-dependent nucleon-nucleon interaction taken
from the theory of finite Fermi systems [16] and with realistic nuclear density distri-
butions for the clusters. Also the deformations of the clusters have to be taken into
account.

The rotation energy can be transformed to the molecular coordinate system

Trot =
1

2μRRR2

(
(Jx′ − I

(1)
x′ − I

(2)
x′ )2 + (Jy′ − I

(1)
y′ − I

(2)
y′ )2

)
+

3∑
i=1

I
(1)2
i

2�(1)
i

+
3∑
i=1

I
(2)2
i

2�(2)
i

, (6)
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where I(1) or (2)
x′,y′,z′ are the components of the angular momenta I(1) and I(2) of the

clusters which are related by an orthogonal transformation, depending on the angles
of the body-fixed systems with respect to the molecular system.

I
(j)
x′(y′,z′) =

3∑
i=1

R
(j)
x′(y′,z′),iI

(j)
i with j = 1 or 2. (7)

The terms containing the products of Jx′,y′ and I(1) or (2)
x′,y′ in Trot constitute the so

called Coriolis interaction which is strongly contributing in molecular systems and
can be partly approximated by introducing the total moment of inertia of the system
as shown next.

A simplified example for a molecular rotation helps to clarify the problems in-
herent in the Coriolis interaction. Let us consider the rotation of two bodies around
the space-fixed z-axis with polar angles ϕ1 and ϕ2 with respect to the space-fixed
x-axis. These two bodies have moments of inertia �(1) and�(2), respectively. In the
space-fixed coordinate system the rotation energy is

Trot =
J2
ϕ1

2�(1)
+

J2
ϕ2

2�(2)
(8)

with the angular momenta Jϕ1 and Jϕ2 . The total angular momentum is given by
J = Jϕ1 + Jϕ2 . If we denote the direction fixed by the angle ϕ1 as molecular axis
and transform Trot to the molecular system by ϑ = ϕ1 and ϕ = ϕ2−ϕ1, we obtain

Trot =
(J − Jϕ)2

2�(1)
+

J2
ϕ

2�(2)
, (9)

where J = Jϑ is the total angular momentum. The first term in Trot contains the
important Coriolis coupling connected with the moment of inertia �(1). In this sim-
ple example the Coriolis coupling term can be transformed away by introducing the
new coordinates

ϑ′ = ϑ+
ϕ

1 + (�(1)/�(2))
and ϕ′ = ϕ. (10)

We obtain

Trot =
J2

2(�(1) + �(2))
+

1
2

(
1
�(1)

+
1
�(2)

)
J2
ϕ′ . (11)

Now we have reached the result that the term containing the square of the total
angular momentum appears with the total moment of inertia �(1) + �(2) and the
second term contains an inverse reduced moment of inertia �(1)−1 + �(2)−1. Such
a transformation is not possible in three dimensions. However, we can approximate
the effects of the Coriolis coupling in (6) with an expression of the form

(J2 − J2
z′)/(2�tot), (12)
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where �tot is an effective total moment of inertia of the system around an axis
perpendicular to the molecular axis.

The moment of inertia �tot can be expressed for very asymmetric cluster con-
figurations, e. g. with α and Li as light clusters, as

�tot(η) = c1

(
�r1 + �r2 +M

A1A2

A
R2

)
. (13)

Here, �ri (i = 1, 2) are the rigid body moments of inertia for the clusters of the
DNS, c1 = 0.85 for all up to now considered nuclei. Single particle effects like
alignment of the single particle angular momenta in the heavy cluster are neglected.
For |η| = 1, the moment of inertia is not known from the data because the exper-
imental moment of inertia is a mean value between the moments of inertia of the
mono-nucleus (|η| = 1) and of the cluster configurations arising due to oscillations
in η. We assume �tot(|η| = 1) = c2�r(|η| = 1) where �r is the rigid body mo-
ment of inertia of the mono-nucleus calculated with the deformation parameters and
c2 = 0.1− 0.3 a scaling parameter fixed by the energy of the first 2+ state.

The Hamiltonian (2) without the mass asymmetry motion and the γ-vibrations
was, for example, applied to resonances observed in the scattering of 24Mg on
24Mg [17, 18]. These resonances have widths of about 200 keV and angular mo-
menta of 36-42 � at incident energies Ec.m. = 42 − 56 MeV [19]. They can be
explained by molecular states in pole-to-pole-like configurations of the 24Mg nu-
clei.

3 Application to Nuclear Structure of 238U

In this Section we apply the Hamiltonian of the dinuclear model to the case of
large mass asymmetries and describe low-lying bands in 238U. We assume that the
clusterization can vary and consists of a heavy cluster with an axially symmetric
quadrupole deformation β and of spherical light clusters, e.g. an alpha-particle. The
internuclear distance coordinate R = Rm is chosen as fixed at the touching con-
figuration which is determined by the minimum of the potential of the DNS in the
internuclear coordinateR. Then the degrees of freedom are: (i) rotation of the heavy
cluster about an axis perpendicular to its symmetry axis, this axis is fixed by the
angles ϑ1 and ϕ1 in the space-fixed system, (ii) rotation of the molecular system,
defined by the direction of R with the angles ϑ2 and ϕ2 in the space-fixed system,
(iii) mass asymmetry motion described by a new mass asymmetry coordinate with
positive values only:

ξ = 2A2/A = 1− η. (14)

The total Hamiltonian is assumed as

H =
J2

1

2�h
+

J2
2

2μRR(ξ)R2
m

− �
2

2B
1
ξ

∂

∂ξ
ξ
∂

∂ξ
+ U(ξ, ε), (15)
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where

J2
i = −�

2

(
1

sinϑi
∂

∂ϑi
sinϑi

∂

∂ϑi
+

1
sin2 ϑi

∂2

∂ϕ2
i

)
with i = 1, 2. (16)

Here, �h is the moment of inertia of the heavy cluster fixed from a comparison with
the energy of the lowest experimental and calculated 2+ state. The spherical light
cluster has �� = 0. Further, J2

1 and J2
2 are the squares of the angular momentum

operators of the rotation of the heavy cluster and of the internuclear distance R
(rotation in the relative motion of light cluster), respectively, described in the space-
fixed coordinate system. The potential energy is a sum of two terms: a power series
expansion in the mass asymmetry coordinate ξ and an interaction energy depending
on the difference angle ε between (ϑ1, ϕ1) and (ϑ2, ϕ2) which is the angle between
the internuclear distance R and the symmetry axis of the heavy fragment:

U =
3∑

n=0

anξ
2n +

C0

2
ξ sin2(ε) (17)

with

sin2(ε) =
2
3

(
1− 4π√

5
[Y2(ϑ1, ϕ1)⊗ Y2(ϑ2, ϕ2)](0,0)

)
. (18)

If the parameter C0 is small, the two rotation degrees of freedom are approxi-
mately independent. For large C0, the symmetry axis of the heavy deformed cluster
is essentially directed towards the light cluster and bending oscillations of the heavy
cluster around the molecular axis occur. Spectra resulting from smaller and larger
C0 values will be discussed below.

The Hamiltonian (15) can be diagonalized. Then the wave function results in the
form

ΨJM =
∑

κ,J1,J2

cκ,J1,J2,Jφκ(ξ)[YJ1(ϑ1, ϕ1)⊗ YJ2(ϑ2, ϕ2)](J,M), (19)

where the functions φκ(ξ) form a basis set for the bound mass asymmetry motion.
Since the heavy cluster can have only even nuclear spin values, the parity of ΨJM is
determined by the wave function of the molecular motion consisting of a rotation in
the relative motion of the light cluster: P = (−1)J2 .

Let us consider the level spectrum for C0 = 0 with a fixed value of ξ = ξ0. In
this case the ground state band with states of positive parity originates from the
rotation of the heavy cluster only with J1 = 0, 2, 4, ..., and the rotation of the
molecular axis is zero (J2 = 0). We note that the relation of moments of inertia
is �h(ξ) > μRR(ξ)R2

m. Therefore, the first excited band with states of negative
parity is built on a rotation of the molecular axis with J2 = 1. These states are de-
generated with spins 1−, (1−, 2−, 3−), (3−, 4−, 5−), ... If C0 starts to increase, the
considered negative parity states lose their property of degeneracy and are shifted.
This effect is recognizable in Figure 1 where we compare the experimental energy
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Figure 1. The experimental and calculated level spectra of 238U. In the diagonalization of H
(Eq. (15)) a smaller parameter C0 is used. The mass asymmetry motion is included. Experi-
mental data are taken from http://www.nndc.bnl.gov/nndc/ensdf/.

spectrum of 238U with the spectrum calculated within this model. Here, the param-
eter C0 has a smaller value. The first excited 0+ state results from the first excited
state in the mass asymmetry motion on which the lower spectrum is approximately
repeated again (ground state band and 1− band starting at 1386 keV).

For larger C0 values, the first negative parity band is shifted downwards and we
obtain bending oscillations of the heavy cluster with a small angle ε. The rotational
part of the Hamiltonian can be transformed for fixed mass asymmetry (C = C0ξ0)
as follows:

H̃ = Hrot +Hbend + Vint, (20)

where

Hrot =
1

2μRRR2
m

(
J2 − 2J2

z′
)
, (21)

Hbend = − �
2

2�b
1
ε

∂

∂ε
ε
∂

∂ε
+

1
2�bε2

J2
z′ +

C

2
ε2, (22)

Vint = − 1
2μRRR2

m

(
Jx′I

(1)
x′ + I

(1)
x′ Jx′ + Jy′I

(1)
y′ + I

(1)
y′ Jy′

)
. (23)

The moment of inertia of the bending motion is

�b = �hμRRR2
m/(�h + μRRR

2
m). (24)
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Figure 2. Result of the diagonalization ofH (Eq. (15)) without the mass asymmetry dynamics
and a larger parameter C0 for an alpha-particle clusterization of 238U (234Th + α).

Approximate eigenenergies can be written as

EJ,M,K,n =
�

2

2(�h + μRRR2
m)

(J(J + 1)−K2) + �ωb(2n + |K|+ 1) (25)

with the oscillator energy of the bending mode

�ωb = �

√
C/�b . (26)

In order to prove (25), we calculated the energy spectrum by diagonalizing the
Hamiltonian (15) disregarding the mass asymmetry motion by assuming an alpha-
clusterization of 238U as example. The resulting spectrum shown in Figure 2 is
well approximated by (25). The ground state band is an unperturbed alternating
parity band as expected in this limit because we have a stable reflection-asymmetric
shape. This band does not describe the experimental ground state band of 238U
which contains only states with even spin and positive parity. The next bands have
K = 1 and n = 1.

The mass asymmetry coordinate used in this Section assumes positive values,
and the light cluster is transferred to the other side of the heavy cluster by rotating
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it by an angle ε = π(−π). This makes it possible to study the dynamics of axially
asymmetric dinuclear shapes in greater detail. Depending on the stiffness parameter
C0, the system has small angular vibrations of the clusters around their equilibrium
position for larger values of C0 and a rotation of the light cluster around the heavy
one over a potential barrier at ε = π/2 for smaller values of C0. The latter case
gives a good description of the spectrum of 238U.

Acknowledgments

We thank DFG (Bonn), VW-Stiftung (Hannover) and RFBR (Moscow) for support-
ing this work. We thank Prof. Nikolay Minkov (Sofia) and Plamen Yotov (Sofia) for
valuable discussions and help.

References

1. V. V. Volkov, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 1879 (1986).
2. V. V. Volkov, Deep Inelastic Nuclear Reactions (Énergoizdat, Moscow, 1982), in Rus-
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