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Abstract. Realistic nucleon-nucleon (NN) interactions, derived within the framework of me-
son theory or more recently in terms of chiral effective field theory, yield new possibilities
for achieving a unified microscopic description of atomic nuclei. Based on spectral distri-
bution methods, a comparison of these interactions to a most general Sp(4) dynamically
symmetric interaction, which previously we found to reproduce well that part of the interac-
tion that is responsible for shaping pairing-governed isobaric analog 0+ states, can determine
the extent to which this significantly simpler model Hamiltonian can be used to obtain an
approximate, yet very good description of low-lying nuclear structure. And furthermore, one
can apply this model in situations that would otherwise be prohibitive because of the size of
the model space. In addition, we introduce a Sp(4) symmetry breaking term by including
the quadrupole-quadrupole interaction in the analysis and examining the capacity of this ex-
tended model interaction to imitate realistic interactions. This provides a further step towards
gaining a better understanding of the underlying foundation of realistic interactions and their
ability to reproduce striking features of nuclei such as strong pairing correlations or collective
rotational motion.

1 Introduction

Spectral distribution theory [1,2] is an excellent framework for comparing the over-
all behavior of microscopic interactions and uncovering fundamental properties of
realistic NN potentials as well as derivative effective interactions [2–4]. Likewise,
this information can be propagated beyond the defining two-nucleon system to nu-
clei with larger numbers of nucleons [2] and for higher values of isospin [5]. We
search for the level of respect for selected underlying symmetries [6, 7] such as the
Sp(4) symmetry [8, 9] of isovector (like-particle and proton-neutron, pn) pairing
correlations plus an isoscalar pn force and the SU(3) symmetry [10] of collective
rotational modes. Such symmetry-respecting microscopic model interactions can
be used to probe the pairing and rotational characteristics of a realistic interaction
[11–14], which will reflect the characteristic properties of the pairing (quadrupole)
model Hamiltonian if both interactions strongly correlate. As these symmetries are
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clearly important for certain spectral features (for example, observed pairing gaps
and enhanced electric quadrupole transitions), we have a tool for rapidly assessing
the likely success of these interactions for reproducing those spectral features.

Recent applications of the theory of spectral distributions also include quantum
chaos, nuclear reactions and nuclear astrophysics with studies on nuclear level den-
sities, transition strength densities, and parity/time-reversal violation (for example,
see [15]). The significance of the method is related to the fact that low-order en-
ergy moments over a certain domain of single-particle states, such as the energy
centroid of an interaction (its average expectation value) and the deviation from
that average, yield valuable information about the interaction that is of fundamental
importance [4, 12, 14, 16–18] without the need for carrying out large-dimensional
matrix diagonalization and with little to no limitations due to the dimensionality of
the vector space. Note that if one were to include higher-order energy moments, one
would gradually obtain more detailed results that, in principle, would eventually
reproduce those of a conventional microscopic calculations.

We compare three modern interactions, namely, the CD-Bonn [19], CD-
Bonn+3terms [20] and GXPF1 [21], based on realistic nucleon-nucleon potentials,
as well as two model interactions with pairing and quadrupole terms, which typ-
ically dominate in nuclei. CD-Bonn is a charge-dependent one-boson-exchange
nucleon-nucleon (NN ) potential that is one of the most accurate in reproducing
the available proton-proton and neutron-proton scattering data. We employ the two-
body matrix elements of the effective interaction derived from CD-Bonn for 0�ω
no-core shell model (NCSM) calculations in the fp shell. In addition, the CD-
Bonn+3terms interaction introduces phenomenological isospin-dependent central
terms plus a tensor force with strengths and ranges determined in no-core 0�ω shell
model calculations to achieve an improved description of the A = 48 Ca, Sc and
Ti isobars. The GXPF1 effective interaction is obtained from a realistic G-matrix
interaction based on the Bonn-C potential [22] by adding empirical corrections de-
termined through systematic fitting to experimental energy data in the fp shell.

Several detailed reviews of the nuclear shell model and its applications have
been published recently [23–25] that delve into related key physics issues that we
explore. However, the present study is novel and includes fp-shell interactions,
which have been developed since those reviews were completed.

2 Theoretical Framework

The theory of spectral distributions (or statistical spectroscopy) is well documented
in the literature [1, 2, 5, 16, 26, 27]. Spectral distribution theory combines important
features, the most significant of which are as follows:

1. The theory provides a precise measure, namely, the correlation coefficient, for
the overall similarity of two interactions. Literally the correlation coefficient is
a measure of the extent to which two interactions “look like” (are correlated
with) one another. In this respect, correlation coefficients can be used to ex-
tract information how well pairing/rotational features are developed in realistic
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interactions, which may differ substantially from an individual comparison of
pairing/quadrupole interaction strengths [6].

2. It gives an exact prescription for identifying the pure zero- (centroid), one- and
two-body parts of an interaction under a given space partitioning. Therefore,
major properties follow:
a) The correlation coefficients are independent of the interaction centroids. (A

direct comparison of two-body matrix elements provided byNN potentials
may be misleading, especially when the averages of the interactions differ
considerably.)

b) The pure one-body part of an interaction, the so-called induced single-
particle energies, is naturally identified in the framework of spectral dis-
tribution theory and is indeed the average monopole interaction (compare
to [21]). As such it influences the evolution of the shell structure, shell gaps
and binding energies [28].

c) The pure two-body part is essential for studies of detailed property-defining
two-body interactions beyond strong mean-field effects.

3. The correlation coefficient concept can be propagated straightforwardly beyond
the defining two-nucleon system to derivative systems with larger numbers of
nucleons [2] and higher values of isospin [5]. This, in addition to the two-
nucleon information provided by alternative approaches (e.g., [29]), yields valu-
able overall information, without a need for carrying out extensive shell-model
calculations, about the universal properties of a two-body interaction in shaping
many-particle nuclear systems.

For a scalar α = n (isospin-scalar α = n, T ) spectral distribution1 the correla-
tion coefficient between two Hamiltonian operators H and H ′ is defined as

ζαH,H′ =
〈(H† − 〈H†〉α)(H ′ − 〈H ′〉α)〉α

σHσH′
=
〈H†H ′〉α − 〈H†〉α〈H ′〉α

σHσH′
, (1)

where the “width” of H is the positive square root of the variance,

(σαH)2 = 〈(H − 〈H〉α)2〉α = 〈H2〉α − (〈H〉α)2, (2)

and 〈· · · 〉α denotes an average value related to the trace of an operator divided by
the dimensionality of the space. The significance of a positive correlation coefficient
is given by Cohen [30] and later revised to the following table:

Table 1. Interpretation of a correlation coefficient.

trivial small medium large very large nearly perfect perfect
0.00-0.09 0.10-0.29 0.30-0.49 0.50-0.69 0.70-0.89 0.90-0.99 1.00

1 For n particles distributed over 4Ω single-particle states, scalar (or isospin-scalar) distri-
bution is called the spectral distribution averaged over the ensemble of all n-particle states
(of isospin T ) associated with the U(4Ω) group structure (or U(2Ω) ⊗ U(2)T ).
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From a geometrical perspective, in spectral distribution theory every interaction
is associated with a vector and the correlation coefficient ζ (Eq. 1) defines the angle
(via a normalized scalar product) between two vectors of length σ (Eq. 2). Hence,
ζH,H′ gives the normalized projection of H onto the H ′ interaction (or H ′ onto
H). In addition, (ζH,H′ )2 gives the percentage of H that reflects the characteristic
properties of the H ′ interaction.

3 Understanding the Nuclear Interaction in Many-Nucleon
Systems

We compare the three modern interactions, H0 = {CD-Bonn, CD-Bonn+3terms,
GXPF1}, based on realistic nucleon-nucleon potentials, and two model pairing and
quadrupole isoscalar interactions in the fp region by means of the theory of spec-
tral distributions. The first model interaction, Hsp(4), is the most general Sp(4)-
dynamically symmetric interaction for a system of n valence nucleons in a 4Ω-
dimensional space [8,9] with two-body antisymmetric JT -coupled matrix elements
for {r ≤ (s, t); t ≤ u} orbits [6],

W JT
rstu = −G0

√
ΩrΩt
Ω

δ(JT ),(01)δrsδtu − {−E0[(−)T + 1
2 ] + C}δrtδsu, (3)

where G0 = G + F
3 , E0 = ( E2Ω + D

3 ), G,F,E,D and C are interaction strength
parameters (see Table I in Ref. [9] for parameter estimates). The sp(4) algebraic
structure is exactly the one needed in nuclear isobaric analog 0+ states to describe
proton-proton (pp), neutron-neutron (nn) and proton-neutron (pn) isovector pairing
correlations [the first term in (3)], while the second term includes isoscalar pn force
related to the E0 isospin symmetry term.

In addition, we construct an extended pairing plus quadrupole model, HM , by
including an additional traceless quadrupole-quadrupole interaction that being sym-
metric under SU(3) breaks the Sp(4) symmetry,

HM = Hsp(4) +H⊥
Q (2), HQ = −χ

2
Q ·Q, (4)

where χ is the only parameter in the present analysis and is determined by optimum
correlation coefficients. The H⊥

Q (2)-term is the part of the pure two-body HQ(2)
interaction that is not contained in (is orthogonal to) the Sp(4) interaction2. This
is because the Sp(4) interaction contains a nonnegligible part of the quadrupole-
quadrupole interaction that is revealed by the correlation between HQ and Hsp(4).
Namely, in the scalar case it is 15% (1f7/2), 29% (1f5/2) and 29% (2p1/22p3/2),
and for the T=1 part of the interactions in the isospin-scalar case, it is 34% (1f7/2),

2 Such a Hamiltonian (Eq. 4) does not affect the centroid of Hsp(4) because H⊥
Q(2) is

traceless and hence preserves the shell structure that is built into Hsp(4) and established
by a harmonic oscillator potential and as a result is favored in many studies [12, 14, 31].
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58% (1f5/2) and 58% (2p1/22p3/2). This is probably one of the reasons why the
Sp(4) model interaction turns out to work rather well despite no explicit appearance
of the quadrupole-quadrupole interaction.

The present study focuses on the weaker but property-defining two-body part of
the interactions, such asH0(2), in the 1f7/2 [6] and upper fp-shell [7] domains. Such
a partitioning of the fp oscillator shell follows naturally from a splitting of these
two regions by a strong spin-orbit interaction. Several correlation coefficients are of
particular interest. Specifically, the overall similarity between a realistic interaction
and the extended pairing+quadrupole model interaction in the (isospin-) scalar case
is estimated by the ζn(T )

H0(2),HM
correlation, while the capability of a realistic inter-

action to describe rotational collective motion, and hence to reproduce rotational
bands and enhanced electric quadrupole transitions, can be detected via its correla-
tion to the full HQ(2) quadrupole-quadrupole two-body interaction, ζn(T )

H0(2),HQ(2).
The isospin-scalar space partitioning is where the ability of a realistic interaction to
form correlated pairs and hence reproduce prominent pairing gaps is detected via
ζn,TH0(2),Hsp(4)

. In the present analysis, the ζn(T )
H0(2),HQ(2) and ζn,TH0(2),Hsp(4)

correlation
coefficients are independent of the quadrupole/pairing interaction strength parame-
ters.

In the detailed case of isospin-scalar distribution in the 1f7/2 orbit, the CD-
Bonn, CD-Bonn+3terms and GXPF1 interactions are found to contain on average
59%, 77%, and 78%, respectively, of the pairing+quadrupole interaction. This per-
centage goes up to 91%, 97%, and 92%, respectively, for the highest possible isospin
group of states for all the nuclei with valence protons and neutrons occupying the
1f7/2 shell (Figure 1). For these states, the strongest correlation was observed be-
tween the CD-Bonn+3terms and the pairing+quadrupole model interaction, where
other types of interactions accounted for in the realistic interaction represent only
3% of it. They constitute 8% of the GXPF1 interaction, and 9% of CD-Bonn. While
both interactions, CD-Bonn+3terms and GXPF1, exhibit a well-developed pairing
character compared to CD-Bonn, the latter appears to build up more (less) rota-
tional collective features that are outside of the scope of the T = 1 (T = 0) Sp(4)
interaction.
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Figure 1. Geometrical representation of the
T = 1 CD-Bonn (light blue), CD-
Bonn+3terms (red) and GXPF1 (green) inter-
actions, in an abstract operator space, where
the horizontal plane is spanned by the or-
thogonal linear operators, the pure two-body
Hsp(4) andH⊥

Q(2) model Hamiltonians, both
linearly independent of the residual interac-
tion operators represented by the vertical axis.
The orientation of the vectors remains the
same for any particle number n ≥ 2 and for
all T = n/2 cases.
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Figure 2. Energy spectra of T = 1 states predicted by the CD-Bonn (light blue), CD-
Bonn+3terms (red) and GXPF1 (green) interactions. Each is compared to the model Hamil-
tonian HM (black) with χ = 0.071, 0.036 and 0.055, respectively. For comparison, the
experimental T = 1 energy spectra of the A = 42 Ca, Sc, Ti isobars (blue) and A = 54 Co
and Fe isobars (magenta) are also shown.

The abovementioned strong correlation coefficients, ζn,T=n/2
H0,HM

, imply that both
realistic and HM interactions are expected to yield energy spectra of a similar pat-
tern. Indeed, for these cases the pairing+quadrupole model interaction appears to
be a very good approximation that provides a reasonable description of the energy
spectra of the nuclei in the 1f7/2 level (Figure 2).

In the upper fp domain the outcome yields strong correlation of the pure
two-body GXPF1 interaction with the pairing+quadrupole extended model in
both scalar and isospin-scalar distributions (Figure 3). Particularly, the outcomes
show very good scalar-distribution correlations of GXPF1 with the Sp(4) dy-
namically symmetric interaction and with the HQ(2) quadrupole-quadrupole in-
teraction (Table 2). Rotational features within many-nucleon systems in the upper
fp domain are found to be more fully developed for GXPF1 and less for CD-
Bonn+3terms and CD-Bonn. The isospin-scalar space partitioning demonstrates a
tendency in GXPF1 towards the formation of correlated pairs in the highest possible
isospin groups of states (Figure 3).

The different extent to which the GXPF1 interaction compared to the CD-
Bonn and CD-Bonn+3terms interactions reflects development of pairing correla-

Table 2. Correlation coefficients for many-nucleon systems of the H0(2) pure two-body part
of the CD-Bonn, CD-Bonn+3terms and GXPF1 interactions with Hsp(4) and H⊥

Q(2), with
the pure two-body full quadrupole-quadrupole interaction, HQ(2), and with the extended
pairing+quadrupole model interaction HM (Eq. 4).

CD-Bonn CD-Bonn+3terms GXPF1

ζH0(2),Hsp(4)
0.55 0.50 0.65

ζH0(2),H⊥
Q

(2) 0.14 0.20 0.51

ζH0(2),HQ(2) 0.28 0.33 0.67
ζH0(2),HM

0.57 0.54 0.83
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tions and collective rotational modes in the upper fp domain may be the reason
why their pure two-body part do not correlate as strongly as, for example, CD-
Bonn and CD-Bonn+3terms do. Namely, in the scalar case the pure two-body cor-
relations are 0.90 (between CD-Bonn and CD-Bonn+3terms) and only 0.56 (CD-
Bonn and GXPF1) and 0.53 (CD-Bonn+3terms and GXPF1). In the isospin-scalar
case, the correlations vary slightly with the particle number and isospin and they are
on average, 0.88 (between CD-Bonn and CD-Bonn+3terms), 0.40 (CD-Bonn and
GXPF1), and 0.37 (CD-Bonn+3terms and GXPF1). In addition, one can compare
the significant monopole influence of the three interactions, which is very similar
for all when averaged over the isospin values. However, in the isospin-scalar distri-
bution, the correlation coefficients involving the induced effective one-body contri-
bution differ between GXPF1 and the two CD-Bonn interactions. Their behavior,
especially below mid-shell, reflects the similarity of the corresponding T = 0 in-
duced single-particle energies and the opposite signs of the correspondingλT=1

3/2 (for

2p3/2) and λT=1
5/2 (for 1f5/2 ) pure one-body interactions.

Individual orbit analysis, including the 1f7/2, 1f5/2, 2p1/2, and 2p3/2 lev-
els, shows considerably stronger correlation of all the interactions with the pair-
ing+quadrupole model interaction (up to 0.8 − 1.00) as well as in nuclear sys-
tems with more than two nucleons. However, more prominent differences among
the interactions appear in the multi-j upper fp domain especially concerning both
CD-Bonn interactions. This may indicate that the inter-orbit interactions do not re-
spect strongly the symmetries imposed in the model interactions. In addition, the
interaction strengths may differ from one orbit to another. While they do not af-
fect correlation coefficients in the singe-j cases, their relative strength is of a great
importance for multi-j analysis. In addition, the difference in the behavior of CD-
Bonn+3terms within both regions, 1f7/2 and upper fp, may reflect the fact that
this interaction was determined through a reproduction of the energy spectrum and
binding energy of A = 48 1f7/2 nuclei.

In the upper fp region, the extended HM pairing+quadrupole interaction is
strongly correlated with the pure two-body GXPF1 interaction especially in the
scalar distribution (Table 2) and for this reason can be used as a good approxima-
tion. This is reflected in the quite good agreement between the experimental low-
lying energy spectra of 58Ni and 58Cu and the theoretical prediction based on the
HM model interaction with χ = 0.027 (see Eq. 4) in the 1f5/22p1/22p3/21g9/2
major shell (Figure 4).

In summary, the present study reveals important information, within the frame-
work of spectral distribution theory, about the types of forces that dominate the
fp-shell CD-Bonn, CD-Bonn+3terms and GXPF1 interactions in nuclei and their
ability to account for many-particle effects such as the formation of correlated nu-
cleon pairs and enhanced quadrupole collective modes. The results also illustrate
that interactions, which were found to strongly correlate, produced energy spectra
of a similar pattern.
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