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Abstract. A nuclear Hamiltonian with high order terms in the collective angular momentum
operators is constructed by applying the method of contact transformations to a Hamiltonian
including intrinsic particle motion and Coriolis interaction. In the space of intrinsic variables
the coefficients of the transformed Hamiltonian appear as matrix elements depending on the
intrinsic angular momentum. Their transformation properties under the time reversal assure
the time-reversal invariance of the Hamiltonian in the collective space. The structure of the
intrinsic matrix elements give an insight into the nature of these coefficients and justifies their
appearance in various phenomenological collective Hamiltonians.

1 Introduction

The appearance of a high order angular momentum dependence in the rotation spec-
tra of atomic nuclei is associated with the interaction between nuclear collective and
intrinsic degrees of freedom [1]. The problem of the intrinsic origin of nuclear col-
lective motion is a difficult one, and although extensive efforts to clarify it starting
from “first principles” or from the more intuitive “geometric” aspect have been ap-
plied over the years, the obtained results suggest an unambiguous explanation of
nuclear collective properties only in some particular cases [2–4].

In the simplest case of an axial symmetric nucleus with zero value K = 0
of the third projection of the collective angular momentum I , the leading order
of the rotation Hamiltonian is Ĥrot = ĥ0(Î2

1 + Î2
2 ), where ĥ0 depends on intrinsic

variables [1]. The expectation values of Ĥrot are given by the well known expression
Erot = �

2I(I + 1)/2J , with the moment of inertia given by J = (�2/2)〈K =
0|ĥ0|K = 0〉−1.

In the general case of more complicated nuclear shape deformations including
reflection asymmetry, triaxiality as well as deformations of larger multipolarity (oc-
tupole, hexadecapole, and so on) the high order angular momentum dependence of
the total rotation Hamiltonian is not well studied. It has been shown that some basic
properties of the rotating complex deformed system can be outlined by considering
a generalized Hamiltonian of the form [5]
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ĤI = h0 +
∑
α

hαÎα +
∑
α,β

hαβ ÎαÎβ +
∑
α,β,γ

hαβγ ÎαÎβ Îγ + · · · , (1)

which is an infinite power series in the angular momentum components Îα (α =
x, y, z) in the body fixed frame. The coefficients in (1) are supposed to depend on
the intrinsic structure of the system. In principal they could be determined micro-
scopically, for instance in the generalized density-matrix approach [6, 7]. However,
this is a difficult task not yet solved in a way allowing a practical application. A
simplification can be achieved if the vibration and rotation motion of the system are
considered fully adiabatically separated. Then the Coriolis effects are absent from
the rotational bands. In such a case the odd powers in the Hamiltonian (1) are ex-
cluded, hα = hαβγ = · · · = 0, and thus only the centrifugal distortion effects are
taken into account [5]. However, this is quite a simplified situation, especially, as
regards to rotational spectra of complex deformed nuclei. From a geometric point
of view the combinations of operators appearing in the various terms of (1) can
be determined by using an appropriate point symmetry group (PSG) under certain
assumptions for the shape characteristics of the system [5, 8]. In such a way some
physically important properties of the system corresponding to complex shape de-
formations can be extracted from the expansion (1).

The purpose of the present work is to address the above problem by showing
that a rotation Hamiltonian similar to (1) can be obtained in a diagonal form after
applying the method of contact transformations [10, 11] to a Hamiltonian including
intrinsic particle motion and Coriolis interaction. The coefficients of the transformed
Hamiltonian are explicitly derived for the terms up to the third-power products of
Î2 and Îz in the form of operators depending on the intrinsic angular momentum.
After acting in the space of intrinsic variables these coefficients appear as intrinsic
matrix elements. Their symmetry properties under the time reversal (T ) operation
provide the time-reversal invariance of the Hamiltonian in the collective space.

Various phenomenological collective models are developed by using Hamilto-
nians in the form of (1), where the coefficients are considered as fitting parame-
ters [8, 9, 13]. Below it will be shown that the contact transformation approach re-
veals the physical meaning of these coefficients, as well as their dependence on the
intrinsic structure of the system.

2 Derivation of a High Order Rotation Hamiltonian

Consider the Hamiltonian

Ĥ = Ĥp + Ĥrot + Ĥc, (2)

where Ĥp describes the intrinsic motion of particles or quasiparticles in a mean
field, Ĥrot is a pure rotation term

Ĥrot =
�

2

2J Î2, (3)
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and Ĥc is the Coriolis interaction

Ĥc = − �
2

2J (ĵ+Î− + ĵ−Î+), (4)

where Î± = Îx± ıÎy , while ĵ± = ĵx± ıĵy are the spherical components of the total
intrinsic particle angular momentum ĵ.

The part of the Hamiltonian (2) containing the intrinsic and the Coriolis interac-
tion ĥ ≡ (Ĥp+ Ĥc) is not diagonal in the space of collective rotations |I, Iz〉. It can
be, however, diagonalized by applying an unitary contact transformation [1, 10, 11]
providing higher order angular momentum terms in the rotation part of the Hamil-
tonian. Below the prescription given in [12] is applied.

Consider the transformed operator

ĥ′ ≡ exp(T̂ )ĥ exp(−T̂ ), (5)

where the antihermitian operator T̂ is defined in the form of an expansion T̂ =∑
n T̂n in which n = 1, 2, 3, ... stands for the powers in which the raising and

lowering components Î± of the total angular momentum appear in the respective
members T̂n of the expansion. The different operators T̂n with n = 1, 2, 3, ... are
determined step by step (as it will be shown below), so as to keep only the diagonal
terms of the transformed Hamiltonian ĥ′. To obtain the expansion up to some fixed
degree nf of the angular momentum components one has to expand the right hand
side of Eq. (5) by using the formula

eABe−A = B + [A,B] +
1
2
[A, [A,B]] + ...+

1
k!

[A, [A, ..., [︸ ︷︷ ︸
k brackets

A,B]...]] + ...

and keeping only the terms up to the order nf in Îα. Thus up to the fourth order
(nf = 4) one has

ĥ′ = Ĥp + Ĥc + [T̂1, Ĥp] +

+ [T̂2, Ĥp] + [T̂1, Ĥc] +
1
2
[T̂1, [T̂1, Ĥp]] +

+ [T̂3, Ĥp] + [T̂2, Ĥc] +
1
2
[T̂2, [T̂1, Ĥp]] +

+
1
2
[T̂1, [T̂2, Ĥp]] +

1
2
[T̂1, [T̂1, Ĥc]] +

1
6
[T̂1, [T̂1, [T̂1, Ĥp]]] +

+ [T̂4, Ĥp] + [T̂3, Ĥc] +
1
2
[T̂1, [T̂3, Ĥp]] +

+
1
2
[T̂2, [T̂2, Ĥp]] +

1
2
[T̂3, [T̂1, Ĥp]] +

+
1
2
[T̂1, [T̂2, Ĥc]] +

1
2
[T̂2, [T̂1, Ĥc]] +

1
6
[T̂1, [T̂1, [T̂1, Ĥc]]] +

+
1
6
[T̂1, [T̂1, [T̂2, Ĥp]]] +

1
6
[T̂1, [T̂2, [T̂1, Ĥp]]] +

+
1
6
[T̂2, [T̂1, [T̂1, Ĥp]]] +

1
24

[T̂1, [T̂1, [T̂1, [T̂1, Ĥp]]]. (6)
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As a first step, the operator T̂1 is determined by the relation

[T̂1, Ĥp] = −Ĥc

=
�

2

2J (ĵ+Î− + ĵ−Î+), (7)

which eliminates the first order contribution of the nondiagonal Coriolis term Ĥc in
Eq. (6). This relation suggests that T̂1 can be taken in the form

T̂1 = (ε̂+Î− − ε̂−Î+), (8)

where the operators ε̂± are functions of the intrinsic degrees of freedom and satisfy
the commutation relations

[ε̂±, Ĥp] = ± �
2

2J ĵ±. (9)

(We remark that the expression (8) is used in [1].)
In the second step, the operator T̂2 is determined so as to eliminate the nondiag-

onal contribution of the second order operator [T̂1, Ĥc], namely

[T̂2, Ĥp] = −1
2
[T̂1, Ĥc]nd, (10)

where ‘nd’ means ‘nondiagonal part’. The operator [T̂1, Ĥc]nd can be obtained ex-
plicitly as a linear combination of the second order operators Î2

±. It allows one to
suppose, by analogy to T̂1, the form of the operator T̂2 as a function of Î2

±

T̂2 = δ̂+Î
2
− + δ̂−Î

2
+. (11)

As a consequence of Eq. (10), the operators δ̂± are determined by the commutation
relations

[δ̂±, Ĥp] =
�

2

2J [ε̂±, ĵ±]. (12)

Similarly to the previous two steps the operator T̂3 is determined by

[T̂3, Ĥp] = −
(

1
2
[T̂2, Ĥc]−

1
4
[T̂1, [T̂1 Ĥc]nd] +

1
3
[T̂1, [T̂1 Ĥc]]

)
nd

, (13)

so as to eliminate the third order non-diagonal terms. As a result it can be presented
in the form

T̂3 = σ̂
(0)
+ Î− − σ̂

(0)
− Î+ +

+ σ̂
(1)
+ {Îz, Î−} − σ̂

(1)
− {Îz, Î+}+

+ γ̂
(0)
+ Î3

− − γ̂
(0)
− Î3

+ +

+ γ̂
(1)
+ {Î2 − Î2

z , Î−} − γ̂
(1)
− {Î2 − Î2

z , Î+}, (14)
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where the intrinsic operators σ̂(0),(1)
± and γ̂(0),(1)

+ are determined by the commutation
relations

[σ̂(0)
± , Ĥp] = − �

2

2J

(
±1

4
[δ̂±, ĵ∓]∓ 1

24
[ε̂∓, τ̂

(0)
± ]± 1

6
{ε̂±, τ̂1}

)
(15)

[σ̂(1)
± , Ĥp] = − �

2

2J

(
−1

2
{δ̂±, j∓} −

1
12
{ε̂∓, τ̂ (0)

± } ∓ 1
6
τ̂±

)
(16)

[γ̂(0)
± , Ĥp] = − �

2

2J

(
−[δ̂±, ĵ±]− 1

12
[ε̂±, τ̂

(0)
± ]

)
(17)

[γ̂(1)
± , Ĥp] = − �

2

2J

(
∓1

4
[δ̂±, ĵ∓]± 1

24
[ε̂∓, τ̂

(0)
± ]− 1

6
[ε̂±, τ̂2]

)
, (18)

with
τ̂1 = {ε̂+, ĵ−}+ {ε̂−, ĵ+} τ̂2 = [ε̂+, ĵ−]− [ε̂−, ĵ+] (19)

and
τ̂

(0)
± = [ε̂±, ĵ±] τ̂

(1)
± = ±[ε̂±, τ̂1] + {ε̂±, τ̂2}. (20)

In the above the curly brackets mean anticommutation ({A,B} ≡ AB +BA).
Finally, the operator T̂4 is determined through the commutation relation

[T̂4, Ĥp] = −1
2
[T̂3, Ĥc]nd −

1
3
[T̂1, [T̂2, Ĥc]]nd −

1
3
[T̂2, [T̂1, Ĥc]]nd

+
1
4
[T̂1, [T̂2, Ĥc]nd]nd +

1
4
[T̂2, [T̂1, Ĥc]nd]nd

− 1
8
[T̂1, [T̂1, [T̂1, Ĥc]nd]nd]nd +

1
6
[T̂1, [T̂1, [T̂1, Ĥc]]nd]nd

+
1
12

[T̂1, [T̂1, [T̂1, Ĥc]nd]]nd −
1
8
[T̂1, [T̂1, [T̂1, Ĥc]]]nd , (21)

so as to eliminate all remaining (fourth order) nondiagonal terms in Eq. (6). As a
result, the transformed Hamiltonian appears in the form

ĥ′ = Ĥp +
1
2
[T̂1, Ĥc]d +

1
2
[T̂2, Ĥc]d +

1
2
[T̂3, Ĥc]d

+
1
3
[T̂1, [T̂1, Ĥc]]d +

1
3
[T̂1, [T̂2, Ĥc]]d +

1
3
[T̂2, [T̂1, Ĥc]]d

− 1
4
[T̂1, [T̂1, Ĥc]nd]d −

1
4
[T̂1, [T̂2, Ĥc]nd]d −

1
4
[T̂2, [T̂1, Ĥc]nd]d

+
1
8
[T̂1, [T̂1, [T̂1, Ĥc]nd]nd]d −

1
6
[T̂1, [T̂1, [T̂1, Ĥc]]nd]d

− 1
12

[T̂1, [T̂1, [T̂1, Ĥc]nd]]d +
1
8
[T̂1, [T̂1, [T̂1, Ĥc]]]d , (22)

where ‘d’ means ‘diagonal part’.
Then, after using the explicit dependence of the operators T̂1, T̂2 and T̂3 on the

powers of the operators Î± and Îz [Eqs (8), (11) and (14), respectively] with all
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related commutation relations, the transformed Hamiltonian ĥ′ can be written up to
the third order as

ĥ′ ≡ exp(T̂ )ĥ exp(−T̂ ) = Ĥp+t̂1Îz+t̂2Î2
z+t̂

′
2(Î

2−Î2
z )+t̂

′
3(Î

2−Î2
z )Îz+. . . (23)

The coefficients in the expansion (23) depend on the total intrinsic angular-
momentum operators ĵ± and on operators defined recursively through commutation
relations with Ĥp. The operator-coefficients t̂1, t̂2, t̂′2 and t̂′3 have been derived in
the following explicit form

t̂1 = − �
2

2J

(
1
2
({ε̂+, ĵ−}+ {ε̂−, ĵ+})− ({σ̂(0)

+ , ĵ−}+ {σ̂(0)
− , ĵ+})

+ ({γ̂(1)
+ , ĵ−}+ {γ̂(1)

− , ĵ+}) + ([σ̂(1)
+ , ĵ−]− [σ̂(1)

− , ĵ+])

+
1
6
({δ̂+, τ̂ (0)

− } − {δ̂−, τ̂ (0)
+ }) + ([ε̂+, δ̂

(2)
− ] + [ε̂−, δ̂

(2)
+ ])

+
1
48

([ε̂+, τ̂
(1)
− ]− [ε̂−, τ̂

(1)
+ ]) +

1
48

({ε̂+, ε̂(12)− }+ {ε̂−, ε̂(12)+ })

− 1
48

({ε̂+, ε̂(21)− } − {ε̂−, ε̂(21)+ })
)

(24)

t̂2 = − �
2

2J

(
2({σ̂(1)

+ , ĵ−}+ {σ̂(1)
− , ĵ+})−

1
4
([δ̂+, τ̂

(0)
− ]− [δ̂−, τ̂

(0)
+ ])

− 1
12

([ε̂+, δ̂
(1)
− ]− [ε̂−, δ̂

(1)
+ ]) +

1
6
({ε̂+, δ̂(2)− } − {ε̂−, δ̂(2)+ })

+
1
24

([ε̂+, ε̂
(21)
− ] + [ε̂−, ε̂

(21)
+ ]) +

1
24

({ε̂+, τ̂ (1)
− }+ {ε̂−, τ̂ (1)

+ })

+ 2([γ̂(1)
+ , ĵ−]− [γ̂(1)

− , ĵ+])
)

(25)

t̂′2 = − �
2

2J

(
([ε̂+, ĵ−]− [ε̂−, ĵ+]) +

1
12

([δ̂+, τ̂
(0)
− ]− [δ̂−, τ̂

(0)
+ ])

− 1
12

({ε̂+, δ̂(2)− } − {ε̂−, δ̂(2)+ }) +
1
48

([ε̂+, ε̂
(12)
− ]− [ε̂−, ε̂

(12)
+ ])

+
1
48

([ε̂+, ε̂
(21)
− ] + [ε̂−, ε̂

(21)
+ ])− 1

48
({ε̂+, τ̂ (1)

− }+ {ε̂−, τ̂ (1)
+ })

− ([σ̂(0)
+ , ĵ−]− [σ̂(0)

− , ĵ+])− ([γ̂(1)
+ , ĵ−]− [γ̂(1)

− , ĵ+]))

− ({σ̂(1)
+ , ĵ−}+ {σ̂(1)

− , ĵ+})
)

(26)
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t̂′3 = − �
2

2J

(
−2([σ̂(1)

+ , ĵ−]− [σ̂(1)
− , ĵ+])− 2({γ̂(1)

+ , ĵ−}+ {γ̂(1)
− , ĵ+})

− 1
2
({δ̂+, τ̂ (0)

− }+ {δ̂−, τ̂ (0)
+ ])− 1

6
([ε̂+, δ̂

(2)
− ] + [ε̂−, δ̂

(2)
+ ])

+
1
12

({ε̂+, δ̂(1)− }+ {ε̂−, δ̂(1)+ })− 1
24

([ε̂+, τ̂
(0)
− ]− [ε̂−, τ̂

(0)
+ ])

+
1
12

({ε̂+, ε̂(21)− } − {ε̂−, ε̂(12)+ })
)

(27)

with

δ̂
(0)
± = [δ̂±, ĵ±], δ̂

(1)
± = [δ̂±, ĵ∓], δ̂

(2)
± = {δ̂±, ĵ∓} (28)

ε̂
(12)
± = {ε̂±, τ̂1}, ε̂

(21)
± = [ε̂±, τ̂2]. (29)

3 Properties of the Hamiltonian in the Collective Space

The above derived high order expansion (23) allows one to discuss the properties of
a more general non-diagonal Hamiltonian, given in the form

Ĥt,I = t̂0 +
∑
α

t̂αÎα +
∑
α,β

t̂αβ ÎαÎβ +
∑
α,β,γ

t̂αβγ ÎαÎβ Îγ

+
∑

α,β,γ,δ

t̂αβγδÎαÎβ Îγ Îδ + · · · . (30)

This Hamiltonian is an analogue of (1), but similarly to (23) the coefficients t̂ξ (ξ =
α, αβ, αβγ, ...) in the different angular momentum powers

∏
κ Îκ (κ = α, β, γ, ...)

represent operators acting in the space of intrinsic variables. The Hamiltonian (1)
can be obtained through the action of (30) in the intrinsic space as follows. Consider
that the total wave function of the nucleus can be taken in the form

Ψ ∼ |τΩ〉|IKM〉, (31)

where |IKM〉 is the standard collective part (M is the third projection of Î in the
laboratory frame) and |τΩ〉 is the intrinsic part characterized by the third projec-
tion Ω of the intrinsic angular momentum ĵ in the body fixed frame (τ stands for
other intrinsic quantum numbers). In the strong coupling limit Ω and K are related
and moreover in the well deformed axially symmetric nuclei one has K = Ω [2].
Here, however, no explicit relation between K and Ω is imposed, keeping the va-
lidity of the consideration for the cases of non-axial deformations and of a weak
coupling between the intrinsic and collective degrees of freedom. Hence one can as-
sume that the intrinsic operator-coefficients t̂ξ in (30) act only in the intrinsic space
|τΩ〉, while the angular momentum powers

∏
κ Îκ act only in the collective space



212 P. Yotov, N. Minkov, R. V. Jolos, and W. Scheid

|IKM〉. Then by taking the expectation value of the total Hamiltonian Ĥt,I in a
given intrinsic state |τΩ0〉 one obtains a collective Hamiltonian of the form (1)

Ĥcoll = 〈τΩ0|Ĥt,I |τΩ0〉 = h0 +
∑
α

hαÎα +
∑
α,β

hαβ ÎαÎβ

+
∑
α,β,γ

hαβγ ÎαÎβ Îγ +
∑

α,β,γ,δ

hαβγδÎαÎβ Îγ Îδ + · · · , (32)

where

h0 ≡ 〈τΩ0|t̂0|τΩ0〉, hα ≡ 〈τΩ0|t̂α|τΩ0〉,
hαβ ≡ 〈τΩ0|t̂αβ |τΩ0〉, hαβγ ≡ 〈τΩ0|t̂αβγ |τΩ0〉,

hαβγδ ≡ 〈τΩ0|t̂αβγδ|τΩ0〉 (33)

represent intrinsic matrix elements. In principal the matrix elements (33) can be
calculated, if the explicit form of the operators t̂ξ (ξ = α, αβ, αβγ, ...) is given, as
in the particular case of Eqs. (24)–(27). A simple example up to the second order is
given in [12]. By considering Ω0 = K and having in mind Eq. (22) of [12] one has

〈K|t̂1|K〉 ∼
〈K|j+|K − 1〉2
EK − EK−1

+
〈K + 1|j+|K〉2
EK+1 − EK

(34)

〈K|t̂2|K〉 ∼
〈K|j+|K − 1〉2
EK − EK−1

− 〈K + 1|j+|K〉2
EK+1 − EK

, (35)

where EK is the intrinsic particle energy.
Here, the following comments on the odd angular momentum powers appear-

ing in the transformed Hamiltonian (23) as well as in the more general collective
Hamiltonian (32) should take place. It is obvious that terms as Îz , Î3

z and Î2Îz en-
tering (23), are not invariant under the time reversal transformation. On the other
hand, since the initial Hamiltonian (2) is a time reversal invariant and the con-
tact transformation does not affect the time reversal symmetry, one should expect
that the transformed Hamiltonian is also an invariant. Indeed, by using the explicit
expressions (24) and (27), it can be verified that the respective intrinsic operator-
coefficients t̂1 and t̂′3 in (23) are not invariant under the time reversal. Thus it ap-
pears that the corresponding terms in the expansion (23)represent products of two
(intrinsic and collective) non-invariant (time-odd) operators under the time reversal.
Since the product of two time-odd operators is a time-even operator, it is proved that
the transformed Hamiltonian is a time reversal invariant. In the case of even angular
momentum powers one has products of two time-even operators which also assure
the time reversal invariance of the Hamiltonian.

In a similar way the time reversal invariance of the Hamiltonian (32) is provided
by the transformation properties of the coefficients hξ which represent intrinsic ma-
trix elements. One deduces that the matrix elements corresponding to the odd an-
gular momentum powers change in sign under the time reversal and together with
the simultaneous change in the sign of the collective time-odd operators assure the
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invariance of the collective Hamiltonian. Thus, for the odd powers in (32) one has
the sign inversion property

hα
T−→ −hα hαβγ

T−→ −hαβγ. (36)

The matrix elements in the even angular momentum powers do not change in sign.
Since the operators t̂ξ are hermitian, the coefficients hξ obtain real values.

Therefore, the collective Hamiltonian of the form (32) is both, hermitian and time
reversal invariant. One should, however, keep in mind that the coefficients hξ are not
simply numbers, but matrix elements of intrinsic operators. Therefore, their values,
although being real numbers, can appear with changed signs, as in (36), after the
time reversal operation is applied. This can be easily illustrated for the terms t̂1Îz
and t̂2Î2

z in Eq. (23) by using Eqs. (34) and (35). Since the intrinsic particle Hamilto-
nian is a time reversal invariant, one has for the single particle energy EK = E−K .

Then, it is clear that under time reversal operation, with K
T−→ −K , the matrix

element 〈K|t̂1|K〉, Eq. (34), changes in sign (time-odd), while the matrix element
〈K|t̂2|K〉, Eq. (35) does not change (time-even). These properties together with the
symmetries of the operators Îz (time-odd) and Î2

z (time-even) provide the time re-
versal invariance of the considered Hamiltonian terms. Since after being calculated
the intrinsic matrix elements Eqs. (34) and (35) give real numbers and the operator
Îz is hermitian, the respective collective Hamitonian terms are also hermitian.

4 Concluding Remarks

The contact transformation formalism developed in the present work allows the
derivation of high order angular momentum terms in the nuclear rotation Hamil-
tonian by taking into account the interplay between collective and intrinsic degrees
of freedom. It is shown that the intrinsic (microscopic) origin of the coefficients in
the different angular momentum powers provides the correct transformation prop-
erties of the Hamiltonian under time reversal and imposes specific sign inversion
rules when the consideration is restricted to the collective space. On this basis the
following main goals are achieved in the present work:

i) The method of contact transformations can be of essential use in the subject
of collective nuclear structure.

ii) It is shown that Hamiltonian terms containing odd powers of the collective
angular momentum operators can play an important role in nuclear dynamics after
taking appropriately into account the presence of intrinsic degrees of freedom.

iii) It is suggested that collective models based on expansions in the powers of
the angular momentum can be justified on a deeper microscopic level by connecting
the expansion coefficients to the matrix elements of operators acting in the space of
intrinsic nuclear variables.

Based on the Coriolis-type interaction between intrinsic and collective modes
the presented formalism allows us to gain an insight into the origin of some ba-
sic properties of nuclear dynamics. From the intrinsic point of view the various
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degrees of freedom are incorporated in the intrinsic matrix elements, which carry
information about the ability of the microscopic structure to “support” a given ro-
tation mode. From the collective point of view different high order products of an-
gular momentum components give respective input in the rotation properties of the
system. From the fundamental-invariance point of view the collective and intrin-
sic parts of the Hamiltonian terms are strictly determined so as to ensure the time
reversal invariance of the total Hamiltonian.

In conclusion, the construction of the nuclear rotation Hamiltonian including
high order angular momentum terms with microscopically determined coefficients
suggests a theoretical tool in the study of the intrinsic origin of nuclear collective
motion.
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