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Abstract. The double-folding model and the high-energy approximation (HEA) of the mi-
croscopic theory of scattering are involved to construct the nucleus-nucleus optical potentials.
In the framework of HEA, the role of the trajectory distortion and in medium effects on cross
sections are estimated. Calculations of differential elastic and total reaction cross sections are
presented and compared with experimental data. Data on reactions of exotic nuclei 6He and
6,7Li with 28Si are analyzed. The co-called semimicroscopic potentials are introduced to get
the best fit to experimental data. These potentials have two free parameters to adjust only
strengths of the microscopically calculated real and imaginary parts of optical potentials.

1 Introduction

The heavy-ion microscopic optical potentials are requested, firstly, when developing
technologies for processing radioactive wastes by means of irradiating them with
heavy-ion beams. They needs in predictions of nucleus-nucleus total reaction cross
sections, obtained in calculations by means of optical potentials.

Second, the nucleus-nucleus potentials are necessary to calculate distorted
waves in the entrance and exit scattering channels for the following study of the
peripheral inelastic scattering and direct nuclear reactions with transfers of nucle-
ons.

Then, as compared to the phenomenological potentials that have an ambiguity in
determining parameters, the microscopic potentials have no free parameters. These
potentials can be used as templates for constructions of the so-called semimicro-
scopic optical potentials, depended on the energy and sort of colliding nuclei.

The other use of studying microscopic potentials is that in their construction one
can get the information on dependence of nucleon-nucleon forces of the density of

� Partially support from the Russian Foundation for Basic Research (grant 03-01-00228) is
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nuclear matter in overlapping region of colliding nuclei. These latter can help to
explain saturation of nuclear matter and also to obtain the nuclear incompressibility
value to be appropriate for the cold nuclear matter in neutron stars.

Below we show briefly the basic formulas for the double-folding potential which
is used as a real part of an optical potential, and also for the complex potential
(with the real and imaginary parts) obtained within the high-energy approximation
(HEA). Then, they will be applied in calculations of differential elastic and total
reaction cross sections made in the framework of the analytic HEA theory and [1,2],
generalized for nucleus-nucleus scattering in [3, 4], and also by using the codes
for numerical solving the Schrödinger equation DWUCK4 (for lower energies) [5]
and ECIS (for higher energies) [6]. (Some details of such consideration of nucleus-
nucleus scattering can be found in the review paper [7]).

2 Microscopic Nucleus-Nucleus Optical Potentials

In recent decade much efforts have gone into developing microscopic models for
calculating nucleus-nucleus potentials themselves – first of all, the double-folding
model (see, e.g., [8, 9]). The peculiar feature of the later is that it calculates only
the real part of an optical potential while the imaginary part is usually presented
phenomenologically with free parameters fitted to experimental data for each spe-
cific energy individually. On the contrary, the HEA microscopic eikonal phase of
scattering and the corresponding amplitude and total reaction cross section can be
calculated unambiguously using the following expressions1:

f(q) = ik

∫ ∞

0

J0(qb)
(
1− eiΦN (b) + iΦc(b)

)
b db, (1)

σr = 2π
∫ ∞

0

(
1− e−2ImΦN(b)

)
b db, (2)

Φ(b) = σ̄NN (i+ ᾱNN )
1
4π

∫ ∞

0

qdq J0(qb) ρ̃p(q) ρ̃t(q) f̃N (q) fm. (3)

Here q = 2k sin(ϑ/2) is the momentum transfer, b is the impact parameter, and
the eikonal phase is defined as an integral over the straight-line trajectory along the
initial momentum ki. In (3), the real and imaginary parts depend on the collision
energy through ᾱNN and σ̄NN - the isospin-averaged ratio of the real to imaginary
parts of the NN-amplitude of scattering at forward angles and the NN total cross
sections, respectively. They are known from experimental data on NN-scattering.
Also, the known values are the form factors ρ̃p(t)(q) of the projectile and target
nuclei, while f̃N (q) is the NN-scattering form factor, and fm is the so-called in
medium factor.

As was shown in [11], the HEA (3) corresponds unambiguously to the HEA
optical potential

1 The detailed consideration of HEA in terms of eikonal functions is presented, e.g., in [10]



Calculations of Nucleus-Nucleus Microscopic Optical Potentials . . . 303

UHopt(r) = V H(r) + iWH(r), (4)

V H = − 2E
k(2π)2

σ̄NN ᾱNN

∫ ∞

0

dq q2j0(qr)ρ̃p(q)ρ̃t(q)f̃N (q), (5)

WH = − 2E
k(2π)2

σ̄NN

∫ ∞

0

dq q2j0(qr)ρ̃p(q)ρ̃t(q)f̃N (q). (6)

So, using the microscopic HEA potential UHopt = V H + iWH one gets the same
results of calculations as being obtained when applying the HEA amplitude (1) and
reaction cross section (2) with the phase (3). This potential is characteristic for the
nucleus-nucleus scattering at relatively high energies, in which case the structure
of nuclei, including exchange effects, manifests itself predominantly in the periph-
eral region of interaction due to the strong absorption in the interior. Therefore the
structure plays an important role in formation of the real part of optical potential
in the region r ≥ R. It is seen from (4)-(6) that the real and imaginary parts of the
HEA potential have the same shape, the fact, which, in general, is not verified by the
results of analysis of experimental data in the framework of the phenomenological
many-parameter optical potentials.

Now we represent the real double-folding potential which includes dependence
on energy and in medium effect (see, e.g., [8]):

V DF = V D + V EX (7)

V D(r) =
∫
d3rpd

3rt ρp(rp) ρt(rt) vDNN (s), s = r + rt − rp, (8)

V EX(r) =
∫
d3rpd

3rt ρp(rp, rp + s) ρt(rt, rt − s)×

vEXNN (s) exp
[
iK(r) · s

M

]
. (9)

Here ρp(t)(r1, r2) are one-particle density matrices, while ρp(t)(r) are their diagonal
parts. The modern calculations of double-folding potentials apply the effective Paris
nucleon-nucleon CDM3Y6 potential vNN having the form

vNN (E, ρ, s) = g(E)F (ρ) v(s), v(s) =
∑

i=1,2,3

Ni
exp(−μis)

μis
, (10)

where the energy and density dependences are given as

g(E) = 1− 0.003E/Ap, F (ρ) = C[1 + α exp(−βρ)− γρ], (11)

ρ = ρp + ρt, C = 0.2658, α = 3.8033, γ = 4.0,

and the parameters Ni and μi are given, e.g., in [8]. The energy dependence of
V EX arises primarily from the contribution of the exponent in the integrand, where
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Figure 1. Behavior of different terms and of the total nucleus-nucleus potentials calculated
with the help of Paris (left side) and Reid (right side) effective NN-potentials.

K(r) = {2Mm/�2[E − VN (r) − Vc(r)]}1/2 is the local nucleus-nucleus momen-
tum, M = ApAt/(Ap +At); m is the nucleon mass, and therefore there occurs the
typical non-linear problem.

Here we paid attention to the role of exchange effects in calculations of
nucleus-nucleus real potentials. This is given in Figure 1 where the double-folding
V DF -potential for the 6He+28Si scattering at E=25 MeV/nucleon is calculated us-
ing two different kinds of effective vNN potentials, the Paris CDM3Y6 and the
Reid DDM3Y1 potentials. They have different sets of the parameters Ni, μi and
C, α, β, γ (see [8]). It is seen, that their direct parts have different signs, and that
the exchange part, in the case of CDM3Y6-forces, is negative and very strong. But
in spite of different signs of separated terms V D and V EX of these two potentials,
the sum of each pairs have the almost identical shape. So, for example, if one calcu-
lates only the direct part V D by using the Paris M3Y NN-forces without accounting
for the exchange part V EX , then the nuclear potential occurs positive one. This
demonstrates the very important role of exchange terms.

3 Total Reaction Cross Section and Attended Effects

In HEA, the total reaction cross section (2) depends on the imaginary part of the
eikonal phase and can be directly calculated using eq.(3). Also, the same result is
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obtained if one uses the definition

Φ(b) = − 1
�v

∫ ∞

−∞
U(

√
b2 + z2) dz, (12)

and utilizes the HEA optical potential (6). In both cases only the imaginary part of
the potential is formally presented in calculations. Instead, if one uses the numerical
codes of solving Schrödinger equation the real part of Uopt contributes, as well. In
the HEA calculations, the effect of the real part can be accounted for by inclusion
of the so-called trajectory distortion, when instead of integration in (1), (2) along
the straight-line trajectory one uses the classical trajectory of motion calculated in
the given real part of the optical potential. Doing so, the useful simplifications are
usually made. Indeed, in the nucleus-nucleus elastic channel, one has the strong
absorption in the inner region b ≤ R, and therefore one needs the correction of
the trajectory only at b ∼ R, where the long-range Coulomb forces are operative.
Usually, this is done according to a simple prescription that consists in replacing the
impact parameter b by bc(b), the distance of closest approach of nuclei in the field
of the potential ZpZte2/r

b → bc = ā+
√
ā2 + b2. (13)

Here, ā = ZpZte
2/2Ec.m. is the half-distance of the closest approach of nuclei at

b = 0.
In Figure 2, one can see from the calculations in [10] that, even at comparatively

small charge of the 16O nucleus, the distortion effect manifests itself at energies as
high as E ∼ 60 A/MeV and becomes significant at still lower energies. Thus, the
Coulomb distortion of the trajectory shifts the diffraction pattern by the Coulomb
deflection angle ϑc ∼ UB/E (UB = ZpZte

2/RC), thus extending the applicability
range of the theory of small-angle scattering within the high-energy approximation.

Figure 2. The influence of the Coulomb trajectory distortion on the elastic differential cross
section related to the Rutherford one. Solid and dashed curves are with and without the tra-
jectory shift. Parameters of the Coulomb and symmetrized Woods-Saxon potentials are taken
from [10].
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Figure 3. The in-medium effect on the total reaction cross sections: solid curves – without al-
lowance for medium, boldface dots – (1/20)ρ◦, dotted curves – (1/6)ρ◦, dash-dotted – (1/3)ρ◦,
and dashed – at ρ◦.

When applying the HEA calculations to compare differential cross sections with
experimental data one should bear in mind that the ratio ᾱNN in the phase (3) is not
well known from experimental data, and this involves ambiguities in estimations
of the real part of the corresponding amplitude of scattering (1). Otherwise, the
NN-total cross section σ̄NN is measured in a good accuracy and parametrized as a
function of energy, e.g., in [12]. Thus, total reaction nucleus-nucleus cross sections
can be calculated in an appropriate way, and below in Section 3, they are performed
using the HEA expressions (2) and (3) without reproducing respective optical po-
tentials (4). In detail the respective formulae and methodical analysis of calculations
of σr are done in [13]. As to methodical results, here we consider only the role of
in medium effect on total reaction cross sections accounted for by the factor fm in
the phase (3). This factor depends on ρ and the collision energy, and can be taken in
its parametrized form from [14]. The reaction cross sections were calculated in [13]
supposing the density ρ not to depend on a distance variable r, i.e. ρ = ρ̄.
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Figure 4. Matter density distributions for 6He calculated with the COSMA-model (dash-
dotted line) and the LSSM-model (dotted line). The M- and T-model densities are given by
solid bunch and dashed lines, respectively. b) Total reaction cross-section for 6He+28Si. The
curves are as in a).
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Figure 5. Total cross sections of reactions of 7Li and 6He with 28Si. Solid curves - the mi-
croscopic (DF+H)- model calculations, dashes - the semiphenomenological S-model. Exper-
imental data and calculated curves are from [24].

Figure 3 shows cross sections at different ρ̄ = ρp + ρt: ρ̄ = 0 (solid curves),
ρ̄ = (1/20)ρ◦ (boldface dots), ρ̄ = (1/6)ρ◦ (dotted curves), ρ̄ = (1/3)ρ◦ (dash-
dotted curves) and ρ̄ = ρ◦ (dashed curves), where ρ◦ = ρp(0) + ρt(0). The radii
and diffuseness parameters of the pointlike densities in projectile and target nuclei
are given in [13]. One can see that the nuclear-medium effect leads to a decrease of
4-7% in total cross sections, the dependence on the matter density being strongly
nonlinear. And it is believed that at lower energies in medium dependence of NN-
forces influences more weakly the nuclear total cross sections because the overlap-
ping region of colliding nuclei decreases when the energy decreases.

In Figures 4, 5 we show how one can use calculations of nucleus-nucleus total
reaction cross sections for testing density of exotic nuclei when density distribu-
tions for the target nuclei are known from other sources. As an example, in Fig-
ure 4 are given the results of the calculations [15] of the total reaction cross sections
for 6He+28Si at energies (E/Ap) = 10 ÷ 40 MeV using the HEA expressions
(2) and (3) with the Coulomb and in-medium corrections included. Comparison
with the data from [16, 17] is made. The 6He densities of the COSMA-model [18]
(dash-dots)2, the LSSM-model [20] (dots), the T-model [21] (dashes), and the M-
model [22] were applied. The T-model density have the Gaussian asymptotics and
its parameters were obtained in [21] by fitting to the data on the total reaction cross
section at E(6He)=800 MeV. Otherwise, the COSMA- and LSSM-model densities
have extended tails which are related to realistic exponential asymptotics. They
result in the enhancement of the corresponding cross-section. The bunch of solid
curves corresponds to calculations with a set of parameters of M-model at the rms
matter radius of 6He Rrms,N = 2.331 fm coincided with the “experimental” rms-
radius obtained in [21]. In the other models, the rms-radii are Rrms,N = 2.560 fm
(COSMA) and Rrms,N = 2.956 fm (LSSM). The problem of such a difference

2 In [15], the applied COSMA-density of 6He is taken with the improved asymptotics from
[19] provided by Dr. S. Ershov
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between rms radii is discussed in [23] where the coupling of elastic and elastic
breakup channels was shown to play an important role in processes with weakly
bound nuclei.

In Figure 5, to remove the questions on an applicability of the HEA at energies
of tens of MeV/nucleon, calculations are presented for reactions at the same energies
but within the DWUCK4 code [5]. Here the microscopic optical potential Uopt =
V DF + iWH was calculated in [24] for the reactions 7Li,6He+ 28Si with V DF

(7), calculated with the help of the effective Paris NN-potential CDM3Y6, as was
explained before, and with the HEA WH potential (6). For 6He, it was utilized the
T-density while for 7Li - the density from [25]. These results from [24] are shown in
Figure 5 by solid curves together with the renewed experimental data on reactions
7Li,6He+28Si, obtained in Laboratory of Nuclear Reactions of JINR. The dashed
curves are calculations using the semiphenomenological model of Satchler [26] (S-
model), where only direct part V D of the real potential was accounted for together
with the phenomenological imaginary part of the potential.

One can conclude that if one applies realistic nuclear densities, then the general
features of experimental total reaction cross sections can be explained without in-
troducing free parameters. To explain the data more exactly, one needs to include
additional effects on mechanism of nuclear reactions, e.g., the role of nucleon re-
moval processes and of the collective excitation channels.

4 Differential Elastic Cross Sections and Semimicroscopic
Optical Potentials

Microscopic optical potentials constructed on the basis of the HEA- and DF-
potentials V H , WH and V DF in the form of

UHopt(r) = V H(r) + iWH(r), (14)

UFopt(r) = V DF (r) + iWH(r) (15)

were calculated and applied in [11] and [27] to estimate differential cross sections
of elastic scattering of the 16O and 17O heavy ions on various nuclei at energies
of about hundred MeV/nucleon and to compare them with existing experimental
data [28] and [29], correspondingly. It is emphasized that, from the beginning no
free adjustable parameters were introduced. As an example, Figures 6, 7 show such
results for the scattering of the 16O nuclei on 40Ca,90Zr at Elab=1503 MeV. Com-
parison was also made with the phenomenological optical Woods-Saxon potentials
UPopt = V P + iWP whose parameters were fitted in [28] with the same experi-
mental data using the code ECIS [6]. Note that our calculations were based on the
HEA eqs.(1), (3), (12), (13) both for the microscopic and phenomenological poten-
tials. It is seen that the HEA curves lie rather close to those obtained by numerical
solving the wave equation at scattering angles of ϑ � 2◦ − 4◦ – that is, within the
applicability range of the HEA method.
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If one considers the results of comparison with experimental data in more detail
then it can be seen from Figure 7b that the behavior of the imaginary part of WH

(dashed curve) of both the optical potentials (14) and (15) differs markedly from the
behavior of the adjusted WS-potential (dotted curve) in the dominant-contribution
region at the periphery of interaction. This in turn leads to sizable deviations of
behaviors of the corresponding differential cross sections in Figure 7c. The reason of
this discrepancy might be due to the nonrealistic slope of the UHopt potential because
of that accounts for only the direct part of nucleus-nucleus interaction. On the other
hand, the depths of microscopic potentials are believed to be too large as compared
to the usual depths of the fitted phenomenological potentials. Indeed, the simple
folding is working well for a comparably weaker densities in the surface region of
interaction, while in the inner region the more complicated effects must be taken
into consideration. Bearing in mind these circumstances one deems it reasonable to
test three possible structures of so-called semimicroscopic optical potentials on the
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basis of microscopic calculations of their individual components, namely,

UAopt = NA
r V H + iNA

imWH , (16)

UBopt = NB
r V DF + iNB

imWH , (17)

UCopt = NC
r V DF + iNC

im V DF . (18)

Thus, each of the potentials involves only two adjustable parameters Nr and Nim.
As a matter of fact, their variation leads to a change in the strength of each of the
two components and to their shift towards the center or away from it.

In [11] and [27], differential cross sections of 16,17O on various target nuclei
were calculated by using these semimicroscopic potentials, and the coefficients Nr
and Nim were determined from a comparison with the experimental data [28], [29].
Figure 8 exhibits the respective results only for scattering of 17O when using the
potential UCopt = NC

r V DF + iNC
im V DF with the coefficients Nr and Nim proved

to be, respectively, 0.6 and 0.6 for 60Ni; 0.6 and 0.5 for 90Zr; 0.5 and 0.5 for 120Sn;
0.5 and 0.8 for 208Pb. The agreements with experimental data appear to be reason-
ably good if one considers that calculations were made in the framework of HEA,
with the result that, at angles beyond its applicability range, there are moderate dis-
crepancies with experimental data.
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Figure 7. The same as in Figure 6, but for 16O+90Zr.
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Figure 8. Ratio of the differential cross sections for elastic scattering of 17O on various target-
nuclei to the Rutherford one according to calculations with semimicroscopic optical poten-
tials (see the text) at Flab = 1435 MeV along with experimental data from [29].

5 Summary

The microscopic approaches to construct optical potentials are most useful because
they are based on known amplitudes and cross sections of nucleon-nucleon scatter-
ing and on density distributions of colliding nuclei. In this way, in principle, one can
establish the dependence of nuclear cross sections on the energy and on the kind of
interacting nuclei. The theory makes it possible to see basic features of mechanism
of nucleus-nucleus scattering, in particular, the leading role of the nuclear periph-
ery, the need for taking into account distortion of the trajectory, and the requirement
of introducing the in medium dependence of effective NN-forces taking part in cal-
culating nucleus-nucleus potentials. One can derive the HEA microscopic optical
potential which is perfectly analogous to that of the HEA microscopic diffraction
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theory, but the HEA-potential itself can be also tested at lower energy when one uses
numerical codes of solving the Schrödinger equation to study scattering processes.
At present one can construct semimicroscopic optical potentials whose asymptotic
coincides with that of microscopic potentials and which introduce only few (say,
two) free parameters,in particular, the absolute values of their real and imaginary
parts adjusted in a comparison with experimental data. The construction of such
nucleus-nucleus potentials removes the known problem of ambiguity of parameters
of phenomenological potentials. Besides, the developed theory of scattering of nu-
clei allows one to study the exotic nuclei, because the microscopic potentials depend
on the shape of their densities and thus it can be tested by involving different models
under consideration.
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