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Abstract. We present a unified relativistic approach to inclusive electron scattering based on
the relativistic Fermi gas model and on a phenomenological extension of it which accounts
for the superscaling behaviour of (e, e’) data. We present results in the A resonance region
and in the highly inelastic domain and show some application to neutrino scattering.

1 Introduction

Electron scattering off complex nuclei is an ideal testing ground for modeling
neutrino-nucleus cross sections, whose accurate prediction is necessary for the anal-
ysis of on-going experimental studies of neutrino oscillations at GeV energies,
presently being pursued in the MiniBooNE and K2K/T2K experiments [1,2].

Indeed inclusive electron (e, e’) and charged-current (CC) neutrino (v;,1~) are
closely related processes: in first Born approximation they involve the response of
the nuclear system to a virtual boson, a photon or a W™, probing the electromag-
netic and weak nuclear currents, respectively.

Since the typical neutrino energies in oscillation experiments are of a few GeV,
we will focus our attention on this kinematical domain. In this case the inclusive
(1,1") cross section shows a pronounced peak, the so-called quasielastic peak (QEP),
at an energy transfer w ~ /¢ + m% — my, corresponding to the quasi-free in-
teraction with the individual nucleons in the nucleus (here my = nucleon mass).
For high values of the momentum transfer ¢ = |q| and higher energy loss it is pos-
sible to produce real pions and the cross section shows a second peak dominated
by the resonant production of a A(1232) at w ~ \/¢?> + m?% — my, where mu
is the A mass. The width of these peaks is related to the Fermi momentum of the
nucleons inside the nucleus and, in the case of the A-peak, also to the decay width
of the A in nuclear matter. Hence for a high enough value of ¢, these two peaks
actually overlap and cannot be separated in inclusive experiments. At higher energy
transfer the so-called second resonance region is found, where the N*(1440)P;;
(Roper), N*(1520) D13 and N*(1535)511 resonances are excited, evolving, at very
high energies, into the Deep Inelastic Scattering (DIS) regime.

Understanding the above spectrum in a unified framework has been the aim of
some recent studies, which will be briefly summarized in this contribution. We shall
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mainly address the electron scattering problem, where more data are available, and
mention some applications to neutrino reactions.

2 The A resonance region

Since the kinematical domain we are exploring involves energy and momentum
transfers of the order of (or higher than) the nucleon mass, the traditional non-
relativistic approach is bound to fail and a relativistic approach to the problem is
required.

A fully relativistic treatment of the nuclear many-body system is a longstanding
and extremely difficult task that is best pursued in special frameworks like the Rel-
ativistic Fermi Gas (RFG) model, where basic symmetries like Lorentz covariance
and gauge invariance are exactly respected.

Hence we assume as a starting point an extension of the RFG model, which has
been widely employed in the QEP, to the inelastic region. In this model, the virtual
boson is absorbed by an on-shell nucleon described by a Dirac spinor w(h, sp,), with
energy B, = \/h2 + m%.

The basic ingredient of the calculation is the hadronic tensor YW*¥, which con-
tains all the information on the nuclear structure and dynamics and yields the (e, e’)
differential cross section with respect to the lepton final energy ¢ and solid angle
{2¢ according to the follwing relation

do _ 202 Ef

A 1 — - v MV7 l
i0dz; ~ QF =W W

where « is the fine structure constant, €; the lepton initial energy, 7,,,, the leptonic
tensor and Q,, = (w, q) the four-momentum transfer.

For the excitation of a stable resonance N* of mass m* the RFG hadronic tensor
turns out to be [3]

pnv *\ 3N *2 *2 v *
W*,RFG(q7w7m ) - 473£F 9(1 _1/1 )(1 _1/1 )Uf (q7w7m ) (2)
KMyn3

where N is the number of nucleons involved in the reaction, k = q/2my and np =
VEr(€F + 2) = krp/my are the dimensionless transferred and Fermi momentum,
respectively, and the “single-nucleon” tensor UL” embeds the information about the
N — N* transition * .

In analogy with the physics of the quasi-elastic peak [5], a scaling variable 1)*,
defined as follows

Bt = s, Aim?) = + giF l“\/% + p(m*)? — Np(m) — 1} LB

* Actually in a fully relativistic framework the single nucleon physics cannot be exactly dis-
entagled from the many-body part of the problem and the tensor U£" contains corrections
due to the medium (see, e.g., ref. [4]).
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with A\ = w/2my and 7 = k2 — A2, has been introduced. The quantity
* 1 *
pm*) =1+ = (m™/my —1) , “)

measures the inelasticity of the elementary process and reduces to 1 in the quasielas-
tic limit m™ = my. The physical meaning of the scaling variable ¥* is the follow-
ing: £p1)*2 represents the minimum kinetic energy required to transform a nucleon
inside the nucleus into a resonance N* when hit by a photon of energy A and mo-
mentum . In terms of the scaling variable the RFG response region associated to a
specific resonance is —1 < 1* < 1 and the peak position corresponds to * = 0.

A realistic model for the resonance requires the inclusion of the decay width I’
in the hadronic tensor. This can be computed from the tensor WE” (¢, w, W) for a
stable N* with mass W by a convolution

Wmaz r(w)/2
Nz _ - v
Wetew) = [ g g e WY

where the integration interval goes from threshold to the maximum value allowed
in the Fermi gas model.

The above expressions are independent of the specific transition under consid-
eration: they can be used to describe the A, the N*(1440) or any other resonance
region [6,7] (after modifying m* and I" (W) accordingly) as well as the quasielastic
peak (in the I" — 0 limit setting m* = my) [8].
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Figure 1. Inclusive cross section per nucleon from 2C. Llight blue: RFG without A width;
green: RFG including the finite A width; blue: PWIA for the quasi-elastic peak; red: hybrid
model obtained by adding the PWIA cross section in the quasi-elastic peak and RFG cross
section in the A-peak. Experimental data are taken from [9].

As already mentioned the specific transition form factors are hidden in the tensor
U™ . Concerning the A resonance, a relativistic calculation of the (e, e’) response
in this region must use the full N — A vertex, which includes the magnetic (M1),
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electric (E2) and Coulomb (C2) excitation amplitudes. Although for years an im-
portant program has been pursued to determine more accurately the quadrupole C2
and £2 amplitudes in the A region (these being small compared with the dominant
dipole M1 amplitude), our knowledge is still incomplete and has not been possible
to undertake a full analysis in the sense of the work by Nozawa and Lee [10] of the
effect of the C2 and E2 form factors in the nuclear A-peak. Accordingly we use the
parameterization [11] Gg v (Q?) = G m(0)GE(Q?)/\/1 - Q2/(3.5GeV/c)?,
namely we assume that the same dependence in Q2 is valid for the electric and
magnetic form factors and that the isobar form factor falls off faster than the proton
form factor.

In Fig. 1 we show results for the nuclear inclusive cross section per nucleon from
12C compared with the experimental data. Light-blue lines correspond to the RFG
for a stable A. The width is included in the green line result according to eq. (5)
and produces a broadening of the A peak and correspondingly a decrease of the
strength. As an illustration of how one could improve the model in the quasi-elastic-
peak region, we also show with blue lines the quasi-elastic cross section computed
with the semirelativistic PWIA model of ref. [12], which includes the momentum
distribution of the finite-sized nucleus, producing the “tails” of the cross section, and
the binding energy of the nucleons in the nucleus, yielding a shift to higher energies.
Finally, we show with red lines the results computed with a hybrid model in which
we add the PWIA cross section for the quasi-elastic contribution to the RFG result
for the A contribution.

As we can see in Fig. 1, our results are below the data in the dip and A region.
This was expected because other contributions coming mainly from two-nucleon
emission and non-resonant pion production (not included in our model) also enter
here.

In Ref. [6] several relativistic effects and ingredients of the calculation were an-
alyzed in detail. Here we just like to stress two basic findings. First, from a compar-
ison between different Lagrangians in the treatment of the A excitation, it emerges
that the Peccei Lagrangian [13], employed in the pioneering calculation by Mo-
niz [14], is only appropriate for computing the transverse response for low momen-
tum transfer, but in the longitudinal channel the full vertex [15]

(Alju|N) =T (C1T g + CaT 25+ CsI35) w (6)
(where ug is the Rarita-Schwinger spinor describing a spin 3/2 particle) should be
retained: indeed the Peccei Lagrangian, corresponding to the first term I'! only,
gives an unreasonably large longitudinal response. Second, we have found a large
sensitivity of the longitudinal response to the inclusion of the Coulomb form factor
of the isobar, especially for high ¢, a fact that could be of importance for investiga-
tions of the longitudinal nuclear response. On the other hand, both longitudinal and
transverse responses are found to be insensitive to the quadrupole E2 form factor.
Let us now briefly comment on the second resonance region, namely where
resonances heavier than the A are found. Among these, the N*(1440)P;; (the so-
called Roper resonance), occurring just above the A(1232), is particularly interest-
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ing, since it can be viewed as a radial excitation of a three-quark nucleon state,
analog of the breathing mode of the nucleus, hence carrying information on the nu-
cleon’s compressibility. A first step towards a theoretical description of the nuclear
response functions in the Roper resonance region was made in ref. [7], where the
corresponding RFG responses were calculated within several different theoretical
models for the electroproduction amplitudes. In particular it was shown that, al-
though the experimental information was still insufficient to allow a stringent test
of the various theories, the longitudinal response R, associated with the Roper can
be large compared with the contribution arising from the A near the light-cone and
that that the impact of the Roper on the Coulomb sum rule can be significant.

3 The highly inelastic region

To study what we call the “highly inelastic” domain, namely the region beyond the
resonances, we assume that the final state can be described in terms of a recoiling
nuclear state plus a highly inelastic state of mass m*. In this case the RFG hadronic
tensor can be written as [3]

3NTER

v _
Winel,RFG(Qa w) = 2f€mw773
F

P2
[ ot - )1 - UL m) D)
P1

where p; and p, are the kinematical boundaries at fixed ¢ and w. Thus for each
value of p (and hence m*) a “peak” can be identified, corresponding to the region
—1 < ¢* < 1, centered at ¢* = 0, whose width is a function that grows with
¢ and decreases with m*. The single-nucleon inelastic hadronic tensor U/” can
be parameterized in terms of two structure functions, w; and wy (see ref. [3]). In
computing it we employ phenomenological fits of the single-nucleon inelastic struc-
ture functions measured in DIS experiments. Among the various parameterizations
which can be found in the literature here we adopt the Bodek et al. fit of [17], which
describes both the deep inelastic and resonance regions.

Once the inelastic RFG modeling is in hand, we can go beyond this simple non-
interacting model, still retaining its relativistic content. This we do by exploiting the
so-called “superscaling” behavior of inclusive lepton-nucleus reactions. We shall
see that this has a significant impact on the nuclear responses at high inelasticity.

In order to introduce the concept of superscaling, we observe that Eq. (2) can be
recast in the form

Wikre(@,w,m") = frrc(¥") x G (q,w,m"), (®)
where 5
Frea(") = 301 = ¢2)(1 = ™) ©

is the RFG superscaling function: hence by dividing the RFG nuclear tensor by
an appropriate tensor G*¥ - whose definition follows immediately from Eqs. (2)
and (8) - a universal function frpg is obtained, which does not depend on the
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three variables ¢, w and kr independently, but only upon one specific combination,
namely the scaling variable (3).

As a consequence the RFG model predicts that if the inclusive cross section
is divided by an appropriate function and plotted versus the corresponding scaling
variable, no dependence on the momentum transfer ¢ (scaling of the first kind) nor
on the target nucleus, specified by the fermi momentum kr (scaling of the second
kind), is found. The simultaneous occurrence of the two kinds of scaling is known
as superscaling.

In the quasielastic peak domain (m* = my), superscaling has been widely
tested against the (e, e’) data in Ref. [18], where it was shown that both kinds of
scaling are fulfilled with a good degree of accuracy in the region ¢ < 0 providing the
momentum transfer is not too low. The scaling analysis of the separated longitudinal
and transverse responses has also proved that the scaling violations observed in the
1 > 0 region mainly reside in the transverse channel, whereas the longitudinal data
do scale rather well in the whole QE region.

However the shape of the experimental QE longitudinal superscaling function
differs from the RFG parabolic one, extending outside the region —1 < ¢ < 1 and,
most importantly, displaying an asymmetry around the QEP with a pronounced tail
in the ¢ > 0 region. The asymmetry of the superscaling function has been and still
is the object of many investigations [19-23] and represents a stringent constraint
that any realistic nuclear model aiming to describe (I, 1) reactions should fulfill.

An expression for a phenomenological QE longitudinal scaling function,
for(v), was obtained by fitting the data [24]. Based on these results, we now make
the following hypothesis: we assume that fog (1) provides a good description of
f@W*) = fo(@*) = fr(¢*) (“scaling of the zeroth kind”), as it implicitly contains
the initial-state physics, and thus we make, for any m*, the following substitution:

frrc (V") — for(¥") . (10)

The corresponding results are illustrated in Fig. 2, where the inclusive cross section
is shown together with the separated QE and inelastic contributions for a '2C target
at F;,. = 4.045GeV and 0, = 15° (a), 30° (b), 45° (¢) and 74° (d), The calculation
was performed in the Relativistic Fermi Gas including a phenomenological energy
shift (red lines) and in the phenomenological extension of it (magenta lines), which
we denote here as ERFG (Extended Relativistic Fermi Gas), based on the fit of the
quasielastic scaling function fgor [24].

We notice that for low scattering angle (a) the RFG model yields roughly the
right position and height of the QE peak, but fails to reproduce the tails of the peak,
giving in particular an unobserved dip at w ~ 800 MeV. On the other hand the
ERFG, while reproducing the data in the tails better, significantly underestimates
the cross section at the peak. This is related to the fact that the peak of the phe-
nomenological function fq g is lower than the corresponding RFG value. For higher
angles [Figs. 2 (b),(c),(d)] the data lie roughly in between the predictions of ERFG
(smaller) and RFG (larger) models, the former again reproducing the low-w behav-
ior better. As a general result we observe that as the scattering angle increases the
range of validity of the ERFG also increases.
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Figure 2. Inclusive cross section for electron scattering from carbon at E;p,. = 4.045 GeV
and 6. = 15° (a), 30° (b), 45° (c) and 74° (d), versus the energy transfer. Red: RFG; ma-
genta: ERFG. The calculation includes an energy shift wspnir: = 20 MeV and the separate
QE and inelastic contributions to the cross section are shown (dashed). Data are from [16].

An important comment is in order. The RFG and ERFG models consider here
the 1p-1h one-body contributions both for elastic scattering from a nucleon in the
nucleus and for representations of the single-nucleon inelastic spectrum, thereby
incorporating effects from meson production, excitation of baryon resonances (no-
tably the A) and, at high excitation energies, DIS. However, in this region and be-
yond effects arising from reaction mechanisms not included here, namely, those
coming from correlations and both 1p-1h and 2p-2h meson-exchange currents can
be also important [25-27] and, from some preliminary study, they tend to bring the
total (the present ERFG contributions plus these additional MEC contributions) into
better agreement with the data. Therefore the fact that the ERFG yields a cross sec-
tion that is below the data is somehow encouraging, since this leaves room for the
above-mentioned effects to provide the balance.

Similar results are obtained for the superscaling function: in Fig. 3 the total scal-
ing function f is shown as a function of the QE variable ¢/’ (the “prime” indicating
the inclusion of a phenomenological energy shift, needed to reproduce the QEP po-
sition) for four different nuclei, within the RFG (left panel) and ERFG (right panel)
models, at £, = 3.595 GeV and 6, = 16°; experimental data are obtained from
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the measured inclusive cross sections divided by the single nucleon cross section
and the curves are obtained by dividing the theoretical inclusive cross section by the
same quantity. A closer inspection of the transverse superscaling function f7 ('),
performed in ref. [3] at the same kinematics, shows that the discrepancy between
“data” and “theory” is larger for the transverse case than for the total scaling func-
tions at this scattering angle (# = 16°). This indicates that extra contributions should
be added to the nuclear model, going beyond the present one-body description, and
that these must act mainly in the transverse channel.
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Figure 3. Total superscaling functions f(¢") for E. = 3.595 GeV and . = 16°. Theoretical
results obtained within the RFG are shown in panel (a), while the ERFG case is presented in
panel (b).

4 Scaling in the A region and application to neutrino scattering

In the previous Section the superscaling function fgg extracted from the quasielas-
tic peak data has been used to calculate the full inelastic (e, ¢’) spectrum. Two ba-
sic assumptions underly this approach: first that the longitudinal and transverse su-
perscaling functions coincide (0-th kind scaling) and second that the superscaling
function, embodying the nuclear initial and final state interactions, is the same in all
kinematical domains, the latter being characterized only by the structure functions
w1 and wa.

In Ref. [28] a different approach to the A resonance region was taken. First the
contribution of the A has been isolated by subtracting from the total experimen-
tal cross section the quasielastic contribution, reconstructed using the superscaling
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function fgp introduced above. Next the left-over cross section has been divided
by the appropriate N — A single-nucleon cross section and the result has been
displayed versus the scaling variable 14, given by Eq. (3) when m* = ma. The
results are found to scale quite well [28] for 1A < 0, suggesting that this proce-
dure has indeed identified the dominant contributions not only in the QE region, but
also in the A region. Of course for )4 > 0 higher resonances come into play and
this procedure is no longer correct. The residual scaling function 4, whose fit is
plotted in Fig. 4, while similar to fog, differs in detail: it is somewhat lower, is
shifted slightly and is more spread out over a wider range of scaling variable. This
is not unexpected, since implicit in this approach is the fact that the A brings with
it its own width and shift. A microscopic analysis of fA is presently being carried
out [29] in order to deconvolute the width from the total response and see whether
or not the underlying scaling function is indeed the basic fgr deduced above.

0.8
0.7
0.6 -

0.3
0.2
0.1F

Figure 4. Fits of the superscaling function for the quasi-elastic (QE) and A-resonance regions
plotted versus the corresponding scaling variable v and compared to the RFG result.

As mentioned in the introduction, a major advantage of the approach above il-
lustrated is that the scaling functions fog and fa extracted by (e, e’) data can be
used to predict neutrino-nucleus cross sections in both the quasielastic and A re-
gions. Indeed, as tested in ref. [28] in a wide range of kinematical conditions, these
phenomenological functions give by construction a good description of the elec-
tron scattering data and are in this sense model-independent. The so-called SuSA
(SUperScaling Approximation) approach amounts to multiply the two superscaling
functions for the corresponding neutrino-nucleon elementary cross section.

Several applications of the SuSA approximation to neutrino and antineutrino
scattering are shown in Ref. [28]. In Fig. 5 we display, as an example, a comparison
of the SuSA and RFG results, clearly showing that the relativistic Fermi gas badly
overestimate the cross section in both the QE and A regions as compared to the
phenomenological model based on superscaling.

It is worth mentioning that more fundamental approaches, based on relativistic
mean field theory with final state interactions [20, 22] and on the coherent density
fluctuation model (CDFM) [30,31] and aiming to justify the properties of the exper-
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Figure 5. Neutrino reaction cross section for £, = 1 GeV and 6 = 45 degrees. Red line:
RFG result; black lines: SuSA result (dashed: A; dotdashed:quasielastic, solid:total) .

imental superscaling function, have been recently carried out both in the quasielastic
and in the A regions and applied to neutrino reactions, leading to results similar to
the ones shown in Fig. 5.

5 Conclusions

We have shown how the full inelastic spectrum of inclusive electron-nucleus scat-
tering can be described within in a fully relativistic unified formalism which can be
applied in the few GeV energy domain. The model, based on the Relativistic Fermi
Gas, takes into account initial and final state interactions in a phenomenological
way through the use of a superscaling function directly extracted from (e, ¢’) data.
This allows one to make model independent predictions for neutrino-nucleus cross
sections, needed in the analysis of v oscillation experiments.
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