
Exactly Separable Version of X(5) and Related Models

Dennis Bonatsos1, D. Lenis1, E. A. McCutchan2, D. Petrellis1, and I. Yigitoglu3

1 Institute of Nuclear Physics, N.C.S.R. “Demokritos”,
GR-15310 Aghia Paraskevi, Attiki, Greece

2 Wright Nuclear Structure Laboratory, Yale University,
New Haven, Connecticut 06520-8124, USA

3 Hasan Ali Yucel Faculty of Education, Istanbul University,
TR-34470 Beyazit, Istanbul, Turkey

Abstract. One-parameter exactly separable versions of the X(5) and X(5)-β2 models, la-
belled as ES-X(5) and ES-X(5)-β2 respectively, are derived by using in the Bohr Hamiltonian
potentials of the form u(β)+u(γ)/β2. Unlike X(5), in these models the β1 and γ1 bands are
treated on equal footing. Spacings within the γ1 band are well reproduced by both models,
while spacings within the β1 band are well reproduced only by ES-X(5)-β2, for which several
nuclei with R4/2 = E(4+

1 )/E(2+
1 ) ratios and [normalized to E(2+

1 )] β1 and γ1 bandheads
corresponding to the model predictions have been found.

1 Introduction

The introduction of the X(5) critical point symmetry [1] has stirred considerable
effort in studying related special solutions [2–5] of the Bohr collective Hamiltonian
[6], as well as in identifying nuclei exhibiting experimentally [7, 8] this behaviour,
with considerable success. However, some open questions remain:

1) The separation of variables used in X(5) and related models is approximate.
In particular, a potential of the form u(β)+u(γ) is used, where β and γ are the usual
collective variables [6]. In the X(5) model [1] an infinite square well potential is used
as u(β), while a harmonic oscillator potential centered around γ = 0 is used as u(γ).
In the X(5)-β2 model [5] a harmonic oscillator potential, β2/2, is used as u(β).
Separation of variables is based on two approximations: a) the limitation to small
angles for γ, b) the replacement of β2 by its average value 〈β2〉 in the terms involved
in the γ-equation. Exact numerical diagonalization of the Bohr Hamiltonian [9],
carried out using a recently introduced computationally tractable version [10–12] of
the Bohr–Mottelson collective model [6], pointed out that the first approximation
is valid for large γ stiffness, while the second approximation is valid for small γ
stiffness.

2) X(5) [1] and the related X(5)-β2 model [5] contain no free parameter (up
to overall scale factors) in the ground state band and β bands, but free parameters
appear in the γ bands and K = 4 bands. As a result the bandheads of the ground
state band and the β bands, as well as their internal structure, are fixed by the theory
without any free parameter, while the bandheads of the γ bands and K = 4 bands
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contain free parameters. It would have been preferable to treat the β and γ bands on
equal footing [13].

In the present work we try to circumvent these problems by using potentials of
the form u(β) + u(γ)/β2, which are known to lead to exact separation of variables
[14–17]. Then the following modifications occur:

1) The second approximation (replacement of β2 by 〈β2〉) is avoided. The first
approximation, namely the limitation to small angles for γ, is still used, in order
to obtain simplified solutions of the γ equation, but it can be a good one if stiff-
ness is kept large [9], which indeed turns out to be the case when comparisons to
experimental data are performed.

2) The models obtained in this way contain one free parameter in all bands,
the stiffness of γ. As a result the relative position of all bandheads and the internal
structure of all bands is fixed by the theory using one parameter, the β1 and γ1 bands
treated on equal footing, as it is desirable [13].

Recent studies on critical point symmetries [1–3] have made clear that the rel-
ative position of bandheads in a nucleus, as well as the internal spacing in each
band, are key structural features which should be reproduced by a model. The in-
ternal spacing of the β1 and γ1 bands, relative to that of the ground state band, will
be shown to provide a stringent test for the various special solutions of the Bohr
Hamiltonian.

2 Spectra

The original Bohr Hamiltonian [6] is

H = − �
2

2B

[
1
β4

∂

∂β
β4 ∂

∂β
+

1
β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1
4β2

∑
k=1,2,3

Q2
k

sin2
(
γ − 2

3πk
)
⎤⎦+ V (β, γ), (1)

where β and γ are the usual collective coordinates, while Qk (k = 1, 2, 3) are
the components of angular momentum in the intrinsic frame, and B is the mass
parameter.

One seeks [1] solutions of the relevant Schrödinger equation having the form
Ψ(β, γ, θi) = φLK(β, γ)DL

M,K(θi), where θi (i = 1, 2, 3) are the Euler angles,
D(θi) denote Wigner functions of them, L are the eigenvalues of angular momen-
tum, while M and K are the eigenvalues of the projections of angular momentum
on the laboratory-fixed z-axis and the body-fixed z′-axis respectively.

As pointed out in Ref. [1], in the case in which the potential has a minimum
around γ = 0 one can write the angular momentum term of Eq. (1) in the form∑

k=1,2,3

Q2
k

sin2
(
γ − 2π

3 k
) ≈ 4

3
(Q2
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Table 1. The key collective quantities R4/2 = E(4+
1 )/E(2+

1 ), normalized β1 bandhead
E(0+

β )/E(2+
1 ) (labelled as 0+

β /2
+
1 ), normalized γ1 bandhead E(2+

γ )/E(2+
1 ) (labelled as

2+
γ /2

+
1 ), spacings of the β1 band relative to the ground state band R2,0,β,g [Eq. (21)] and

R4,2,β,g [Eq. (21)], as well as spacing of the γ1 band relative to the ground state band
R4,2γ,g [Eq. (22)] are listed for different models, including X(5)-β2n [5], X(5) [1], X(5)-
D [4], Caprio’s exact numerical diagonalization of the Bohr Hamiltonian [9], and the present
exactly separable analogues of X(5) [ES-X(5)] and X(5)-β2 [ES-X(5)-β2]. Parameter values,
if present, are listed in the column “Par”, using the definition and symbol of the relevant orig-
inal publication. The notation “par” indicates that the corresponding quantity depends on an
additional free parameter.

model Par R4/2 0+
β /2

+
1 2+

γ /2
+
1 R2,0,β,g R4,2,β,g R4,2,γ,g

X(5)-β2 2.646 3.562 par 1.000 1.000 1.132
X(5)-β4 2.769 4.352 par 1.250 1.205 1.101
X(5)-β6 2.824 4.816 par 1.416 1.344 1.089
X(5)-β8 2.852 5.091 par 1.528 1.441 1.083
X(5) 2.904 5.649 par 1.801 1.701 1.071
X(5)-D β0

0.0 2.646 3.562 par 1.000 1.000 1.131
1.0 2.756 4.094 par 1.000 1.000 1.108
1.5 2.978 5.756 par 1.000 1.000 1.064
2.0 3.156 8.772 par 1.000 1.000 1.031
5.0 3.327 50.130 par 1.000 1.000 1.001

Caprio a
0. 2.20 3.03 2.20 1.77 0.31 1.16

200. 2.76 5.66 6.09 2.31 1.74 1.15
400. 3.02 8.37 10.12 2.19 1.76 1.04
600. 3.12 10.26 13.42 2.00 1.79 0.95
800. 3.17 11.71 16.19 1.91 1.70 1.00

1000. 3.20 12.89 18.66 1.84 1.69 0.97
ES-X(5) c

2.0 3.166 10.298 3.166 1.649 1.606 0.929
4.0 3.234 13.643 5.955 1.579 1.552 0.909
6.0 3.264 16.451 8.764 1.534 1.515 0.904
8.3 3.283 19.292 12.013 1.497 1.484 0.903

10.0 3.292 21.210 14.423 1.477 1.465 0.904
12.0 3.299 23.317 17.266 1.456 1.447 0.905
13.7 3.304 25.012 19.692 1.442 1.433 0.906

ES-X(5)-β2 c
2.0 3.006 6.074 3.006 1.000 1.000 0.852
4.0 3.117 7.806 5.516 1.000 1.000 0.796
6.0 3.171 9.217 8.011 1.000 1.000 0.771
8.0 3.204 10.439 10.502 1.000 1.000 0.757

10.0 3.225 11.531 12.991 1.000 1.000 0.749
12.0 3.241 12.529 15.478 1.000 1.000 0.742
14.0 3.252 13.453 17.965 1.000 1.000 0.738
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Figure 1. Experimental data for the energy ratios R2,0,β,g [Eq. (21)] (a), R4,2,β,g [Eq. (21)]
(b), and R4,2,γ,g [Eq. (22)] (c). For each ratio, all nuclei with A > 50 (excluding magic and
semimagic nuclei) for which sufficient experimental data (taken from Ref. [23]) exist, have
been taken into account.

Using this result in the Schrödinger equation corresponding to the Hamiltonian of
Eq. (1), introducing [1] reduced energies ε = 2BE/�2 and reduced potentials u =
2BV/�2, and assuming that the reduced potential can be separated into two terms of
the form u(β, γ) = u(β) + u(γ)/β2, as in Refs. [14–17], the Schrödinger equation
can be separated into two equations[

− 1
β4

∂

∂β
β4 ∂

∂β
+

L(L + 1)
3β2

+ u(β) +
λ

β2

]
ξL(β) = εξL(β), (3)

[
− 1

sin 3γ
∂

∂γ
sin 3γ

∂

∂γ
+

K2

4

(
1

sin2 γ
− 4

3

)
+ u(γ)

]
ηK(γ) = ληK(γ). (4)

Eq. (4) for γ ≈ 0 can be treated as in Ref. [1], considering a potential of the
form u(γ) = (3c)2γ2/2 and expanding in powers of γ. Then Eq. (4) takes the form[

− 1
γ

∂

∂γ
γ
∂

∂γ
+

K2

4γ2
+ (3c)2

γ2

2

]
ηK(γ) = εγηK(γ), (5)

with εγ = λ + K2

3 . The solution is given in terms of Laguerre polynomials [1]

εγ = (3c)(nγ + 1), nγ = 0, 1, 2, . . . , (6)

nγ = 0, K = 0; nγ = 1, K = ±2; nγ = 2, K = 0,±4; . . . ,
(7)

ηnγ ,K(γ) = Cn,Kγ
|K/2|e−(3c)γ2/2L|K/2|

n (3cγ2), n = (nγ − |K/2|)/2. (8)

Eq. (3) is then solved exactly for the case in which u(β) is an infinite well
potential
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u(β) =
{

0 if β ≤ βW
∞ for β > βW

. (9)

Setting [1] ξ̃(β) = β3/2ξ(β), ε = k2
β , and z = βkβ , one obtains the Bessel equation

d2ξ̃

dz2
+

1
z

dξ̃

dz
+
[
1 − ν2

z2

]
ξ̃ = 0, (10)

with

ν =

√
L(L+ 1) −K2

3
+

9
4

+ 3c(nγ + 1). (11)

From the boundary condition ξ̃(βW ) = 0 the energy eigenvalues are then [1]

εβ;s,L = (ks,L)2, ks,L =
xs,L
βW

, (12)

where xs,L is the s-th zero of the Bessel function Jν(ks,Lβ), while the relevant
eigenfunctions are

ξs,L(β) = Cs,Lβ
−3/2Jν(ks,Lβ), (13)

where Cs,L are normalization constants. For K = 0 one has L = 0, 2, 4, . . . , while
for K �= 0 one obtains L = K , K + 1, K + 2, . . .

The full wave function reads

Ψ(β, γ, θi) = Cs,Lβ
−3/2Jν(ks,Lβ)ηnγ ,K(γ)DL

MK(θi), (14)

and should be properly symmetrized [1]

Ψ(β, γ, θi) =
1√
2

[
φL,K(β, γ)DL

MK(θi) + (−1)L+KφL,−KDL
M,−K(θi)

]
. (15)

Bands occuring in this model, characterized by (s, nγ), include the ground state
band (1, 0), the β1-band (2, 0), the γ1-band (1, 1), the first K = 4 band (1, 2). The
relative position of all levels depends on the single parameter c. Therefore the main
difference between the present model and X(5) is that in the present model all bands
are fixed by the single parameter c, while in X(5) the ground state band and the other
nγ = 0 bands are fixed in a parameter-free way, but the bandheads of the nγ �= 0
bands depend on free parameters.

In Ref. [18] a variant of the X(5) model has been considered, in which during
the separation of variables the term K2/3 has been kept in the β-equation, while
in Ref. [1] this term has been put in the γ-equation. This choice leads to different
results (different expression for ν, in particular) when the method of Refs. [1, 18] is
followed, but it makes no difference in the present approach.

Eq. (3) is exactly soluble also in the case in which u(β) = β2/2. In this case,
which is analogous to the X(5)-β2 model [5], the eigenfunctions are [19]

FLn (β) =

[
2n!

Γ
(
n + a + 5

2

)]1/2

βaL
a+ 3

2
n (β2)e−β

2/2, (16)
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where Γ (n) stands for the Γ -function, Lan(z) denotes the Laguerre polynomials,
and

a = −3
2

+

√
L(L + 1) −K2

3
+

9
4

+ 3c(nγ + 1), (17)

while the energy eigenvalues are

En,L = 2n+a+
5
2

= 2n+1+

√
L(L + 1) −K2

3
+

9
4

+ 3c(nγ + 1), n = 0, 1, 2, . . .
(18)

In the above,n is the usual oscillator quantum number. A formal correspondence
between the energy levels of the X(5) analogue and the present X(5)-β2 analogue
can be established through the relation

n = s− 1. (19)

It should be remembered, however, that the origin of the two quantum numbers is
different, s labelling the order of a zero of a Bessel function and n labelling the
number of zeros of a Laguerre polynomial. In the present notation, the ground state
band corresponds to s = 1 (n = 0). For the energy states the notation Es,L =
En+1,L of Ref. [1] will be kept.

On the present approach the following general comments apply.
a) The use of a potential of the form u(β) + u(γ)/β2, instead of a potential of

the form u(β)+u(γ) [as in X(5) and X(5)-β2] leads to exact separation of variables
instead of an approximate one [14–17]. As a result, no β2 factors appear in the
γ-equation, and therefore the approximation of replacing β2 by its average value,
〈β2〉, used in X(5) and X(5)-β2, is avoided. Exact numerical diagonalizations [9] of
the Bohr Hamiltonian have demonstrated that this approximation is valid only for
small γ stiffness. This requirement is removed in the present case.

b) However, the treatment of the γ-equation in the present approach is based
on the same approximation of small γ angles also used in the X(5) and X(5)-β2

models. The potential (3c)2γ2/2 used here is the lowest order approximation for
small γ to the potential c2(1 − cos 3γ), which has also been used in Ref. [20].
It should be reminded that the dependence on cos 3γ results from the symmetry
requirements [6] of the Bohr Hamiltonian, explicitly listed in Ref. [21]. A two-
dimensional oscillator in γ, similar to the one obtained here, has also been obtained
in Ref. [20] in the limit of large γ stiffness (large c in the present notation). The
exact numerical diagonalizations of the Bohr Hamiltonian carried out in Ref. [9]
consistently demonstrated that the small angle approximation for γ is good for large
γ stiffness, which in the present models can be achieved, since the requirement of
small γ stiffness is not present any more, as discussed in point a). In Sec. 3 we shall
see that experimental data are reproduced for values of c of order 10, corresponding
to (3c)2 ≈ 900.

c) Small oscillations in γ around the zero value, corresponding to axially de-
formed prolate shapes, have also been considered in Ref. [22], leading to the conclu-
sion that K can be considered as a good quantum number either if γ is fixed to zero,
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Table 2. Comparison of theoretical predictions of the exactly separable analogue of the X(5)-
β2 model [ES-X(5)-β2] (upper part) and of the exactly separable analogue of the X(5) model
[ES-X(5)] (lower part) to experimental R4/2 = E(4+

1 )/E(2+
1 ) ratios, as well as to experi-

mental β1 and γ1 bandheads, normalized to the 2+
1 state and labelled by 0+

β /2
+
1 and 2+

γ /2
+
1

respectively. All data have been taken from Ref. [23].

nucleus R4/2 0+
β /2

+
1 2+

γ /2
+
1 c R4/2 0+

β /2
+
1 2+

γ /2
+
1

exp exp exp th th th

188Os 3.083 7.008 4.083 2.9 3.068 6.908 4.139
186Os 3.165 7.736 5.596 4.0 3.117 7.806 5.516
184Os 3.203 8.698 7.870 5.7 3.165 9.019 7.637
184W 3.274 9.014 8.122 6.0 3.171 9.217 8.011
162Er 3.230 10.654 8.827 7.0 3.189 9.847 9.257
166Yb 3.228 10.189 9.108 7.0 3.189 9.847 9.257
158Dy 3.206 10.014 9.567 7.3 3.194 10.028 9.630
170Er 3.310 11.335 11.883 9.2 3.218 11.107 11.995
182W 3.291 11.346 12.201 9.4 3.220 11.215 12.244
180Hf 3.307 11.807 12.855 10.0 3.225 11.531 12.991
156Gd 3.239 11.796 12.972 10.0 3.225 11.531 12.991
228Ra 3.207 11.300 13.258 10.1 3.226 11.583 13.115
170Yb 3.293 12.692 13.598 10.7 3.231 11.890 13.861
230Th 3.273 11.934 14.687 11.3 3.236 12.189 14.608
228Th 3.235 14.402 16.776 13.4 3.249 13.182 17.219
154Sm 3.254 13.410 17.567 13.7 3.251 13.318 17.592
172Yb 3.305 13.245 18.616 14.4 3.254 13.630 18.463
232U 3.291 14.530 18.221 14.5 3.255 13.674 18.587

166Er 3.289 18.118 9.754 6.7 3.271 17.352 9.751
162Dy 3.294 17.332 11.011 7.6 3.278 18.462 11.022
162Gd 3.291 19.792 11.983 8.3 3.283 19.292 12.013
176Yb 3.308 21.661 15.352 10.6 3.294 21.857 15.275

or if the nucleus is strongly deformed. In Sec. 3 we shall see that good agreement
with experimental data is obtained for nuclei with R4/2 = E(4+

1 )/E(2+
1 ) > 3.15,

i.e. for nuclei which are well deformed.

3 Numerical results and comparison to experiment

Numerical results for the present models, referred to as exactly separable X(5) [ES-
X(5)] and exactly separable X(5)-β2 [ES-X(5)-β2] respectively, are shown in Table
1, together with results for several other models, including X(5) [1], exact numerical
diagonalization of the Bohr Hamiltonian [9] (labelled by “Caprio”), X(5)-β2n (n =
1, 2, 3, 4) [5], X(5) with a Davidson potential
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u(β) = β2 +
β4

0

β2
, (20)

where β0 is the minimum of the potential [4], labelled as X(5)-D. The collec-
tive quantities reported in Table 1 include the ground state band ratio R4/2 =
E(4+

1 )/E(2+
1 ), the bandheads of the β1 and γ1 bands, E(0+

β ) and E(2+
γ ), normal-

ized to E(2+
1 ), the spacings within the β1 band relative to these of the ground state

band

R2,0,β,g =
E(2+

β ) − E(0+
β )

E(2+
1 )

, R4,2,β,g =
E(4+

β ) − E(2+
β )

E(4+
1 ) − E(2+

1 )
, (21)

and the spacing within the γ1 band relative to that of the ground state band

R4,2,γ,g =
E(4+

γ ) − E(2+
γ )

E(4+
1 ) − E(2+

1 )
. (22)

Experimental values for the energy ratios R2,0,β,g, R4,2,β,g, and R4,2,γ,g are shown
in Fig. 1 for all nuclei with A > 50 (excluding magic and semimagic nuclei). The
following comments can be made:

1) From Fig. 1(a),(b) it is clear that the majority of nuclei exhibit ratios R2,0,β,g

and R4,2,β,g close to 1 or slightly below it, indicating that the spacings within the
β1 band are similar to the spacings within the ground state band, as expected for a
band displaced from the ground state band by one quantum of β vibration. Ratios
exactly equal to 1 are provided by the X(5)-β2, ES-X(5)-β2, and X(5)-D models,
guaranteed by the β2 term present in the relevant potentials. X(5) gives values of 1.8
and 1.7 respectively, the well known point of disagreement with experimental ratios
by a factor close to 2 [7,8]. The exact numerical diagonalization of Ref. [9] provides
similar or higher values, while ES-X(5) gives values around 1.5 . The X(5)-β4, X(5)-
β6, and X(5)-β8 models interpolate between X(5)-β2 and X(5), as expected, since
higher powers of β2n closer approximate the infinite well potential.

2) The above observations can be understood in the following way. It is known
that the problem of overprediction of the spacing within the β1 band by X(5) can
be resolved by replacing the infinite well potential in β by a potential with sloped
walls [2]. The combination of the five-dimensional centrifugal term with the sloped
well provides a potential with a minimum, resembling the Davidson potential of Eq.
(20) as well as the sum of a harmonic oscillator potential and a centrifugal term.

3) From Fig. 1(c) it is clear that the majority of nuclei exhibit ratios R4,2,γ,g

close to 1, indicating that the spacings within the γ1 band are similar to the spacings
within the ground state band. Among the models of Table 1, X(5), X(5)-β2n, as well
as X(5)-D, provide values slightly higher than 1, the ES-X(5) and ES-X(5)-β2 mod-
els give values slightly lower than 1, while the exact numerical diagonalization of
Ref. [9] is in between. It is interesting that in the X(5)-D model for large parameter
values, the spacing within the γ1 band becomes the same as within the ground state
band and the β1 bands, as expected in the SU(3) limit.
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Table 3. Comparison of the predictions of the exactly separable analogue of the X(5)-β2

model [ES-X(5)-β2] (with c = 10.0) to the experimental spectrum of 156Gd [23] (upper part),
and of the predictions of the exactly separable analogue of X(5) [ES-X(5)] (with c = 7.6) to
the experimental spectrum of 162Dy [23] (lower part). The energy levels of the ground state
band (gsb), the β1 band, and the γ1 band are normalized to the 2+

1 level.

gsb gsb β1 β1 γ1 γ1

L exp th exp th L exp th
156Gd

0 0.000 0.000 11.796 11.531 2 12.972 12.991
2 1.000 1.000 12.695 12.531 3 14.027 13.712
4 3.239 3.225 14.587 14.757 4 15.235 14.656
6 6.573 6.468 17.311 17.999 5 16.937 15.811
8 10.848 10.500 20.775 22.031 6 18.474 17.162

10 15.916 15.122 24.952 26.653 7 20.792 18.692
12 21.631 20.179 30.435 31.710 8 22.607 20.388
14 27.828 25.559 9 25.285 22.233
16 34.388 31.180 10 27.452 24.213

162Dy
0 0.000 0.000 17.332 18.462 2 11.011 11.022
2 1.000 1.000 18.020 19.969 3 11.938 11.909
4 3.294 3.278 19.518 23.369 4 13.154 13.081
6 6.800 6.733 21.913 28.445 5 14.664 14.532
8 11.412 11.259 24.619 34.975 6 16.420 16.255

10 17.044 16.768 28.041 42.778 7 18.477 18.242
12 23.572 23.195 32.156 51.721 8 20.709 20.485
14 30.895 30.493 36.640 61.705 9 23.284 22.975
16 38.904 38.625 10 25.879 25.708
18 47.583 47.568 11 28.981 28.676

12 31.396 31.873
13 35.453 35.295
14 39.437 38.936

From the above observations it is expected that the one-parameter ES-X(5)-β2

and X(5)-D models, as well as X(5)-β2, are more appropriate for reproducing the
correct spacings within the β1 and γ1 bands. However, the position of the bandheads
is also important. It is then reasonable to look for nuclei for which a model can
closely reproduce the R4/2 ratio, characterizing the development of the ground state
band, but also the development of the β1 and γ1 bands, according to the systematics
of Fig. 1, as well as the normalized bandheadsE(0+

β )/E(2+
1 ) andE(2+

γ )/E(2+
1 ). A

search of all even nuclei with Z > 50, for which sufficient data exist [23], provided
the results shown in Table 2. 18 examples have been found for ES-X(5)-β2, as well
as 4 examples for ES-X(5).

The basic difference between ES-X(5)-β2 and ES-X(5) is shown in Table 3,
where the ground state, β1 and γ1 bands of 156Gd, a good example of ES-X(5)-β2,
and 162Dy, a good example of ES-X(5), are shown. In the first case the agreement
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between theory and experiment remains good in all three bands up to high angular
momenta, while in the second case this holds only for the ground state and γ1 bands,
the theoretical β1 band diverging from the data with increasing angular momentum.

4 Discussion

In summary, exactly separable one-parameter versions of the X(5) and X(5)-β2

models, labelled as ES-X(5) and ES-X(5)-β2, have been derived, by using poten-
tials of the form u(β)+u(γ)/β2. Unlike X(5), in these models the β1 and γ1 bands
are treated on equal footing. The spacings within the γ1 band are in agreement to
experimental evidence in both models, while the spacings within the β1 band are re-
produced correctly only by ES-X(5)-β2. Several nuclei for which the R4/2 ratio, as
well as the normalized positions of the β1 and γ1 bandheads are closely reproduced
by ES-X(5)-β2 have been identified. A detailed study of the complete level schemes
of these nuclei, including B(E2) transition rates, is deferred to a longer publication.
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